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1. ĮVADAS 

1.1. Darbo tikslas ir uždaviniai 
Šio darbo tikslas – SDSS (Sloan‘o skaitmeninio dangaus tyrimo DR17) duomenų imčiai su 

pilnu ir atrinktų požymių rinkiniu, bei tos paties duomenų imties sumažintos dimensijos duomenų 

rinkiniui pritaikyti „kMeans“ ir „DBSCAN“ klasterizavimo algoritmus, palyginti jų rezultatus, 

apibrėžti susidariusių klasterių specifiką. 

Darbo uždaviniai: 

1. Trumpai aprašyti tiriamą duomenų aibę, jos požymius, pagrindines savybes. 

2. Pasirinkti ir pagrįsti pagal kokius požymius bus atliekamas klasterizavimas. 

3. Naudojant „Elbow“ ir „Silhouette“ metodus įvertinti optimalų klasterių skaičių. 

4. Suklasterizuoti duomenis naudojant „kMeans“ ir „DBSCAN“ klasterizavimo 

algoritmus. 

5. Patikrinti, kokią įtaką daro klasterizavimui išskirtys bei duomenų dimensijos 

mažinimas. Kaip keičiasi tendencijos klasteriuose? 

6. Apibendrinti rezultatus, pastebėtas tendencijas klasteriams, pateikti jų interpretaciją. 

 

1.2. Darbo įrankiai 
Duomenų apdorojimas, transformacija, analizė, dimensijų mažinimo metodai ir 

klasterizavimo metodai buvo pritaikyti naudojant „Python 3.12.0” programavimo kalbą ir jos 

bibliotekas (daugiau žiūrėti skyrių Kodas).   
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2. DUOMENŲ ANALIZĖ 

2.1. Tiriamos duomenų aibės ir jos požymių aprašymas 
Pateiktoje žvaigždžių klasifikacijos duomenų aibėje („Stellar Classification Dataset“) yra 100000 

eilučių, 18 požymių stulpelių. Jutiklių matavimai yra „float“ tipo (t.y. priklauso realiųjų skaičių 

aibei) , „class“ požymis yra „object“ tipo (t.y. simboliai), likę požymiai yra „int“ tipo (t.y. 

priklauso sveikųjų skaičių aibei). 

 

2.1 pav. pradinė duomenų aibė 

 

Duomenų aibės požymių aprašymai: 

• obj_ID = objekto identifikatorius, unikali dangaus kūno vertė, identifikuojanti objektą 

CAS naudojamame vaizdų kataloge. 

• alpha = dešiniojo pakilimo kampas (pagal J2000 epochą) 

• delta = deklinacijos kampas (pagal J2000 epochą) 

• u = ultravioletinis astrofotometrinės sistemos filtras 

• g = žaliasis astrofotometrinės sistemos filtras 

• r = raudonasis astrofotometrinės sistemos filtras 

• i = artimųjų infraraudonųjų spindulių filtras astrofotometrinė sistemoje 
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• z = infraraudonųjų spindulių filtras astrofotometrinė sistemoje 

• run_ID = serijos numeris, naudojamas konkrečiam nuskaitymui identifikuoti 

• rereun_ID = pakartotinio paleidimo numeris, nurodantis, kaip vaizdas buvo apdorotas 

• cam_col = kameros stulpelis, skirtas skenavimo linijai nustatyti 

• field_ID = lauko numeris kiekvienam laukui identifikuoti 

• spec_obj_ID = unikalus optinių spektroskopinių objektų ID (tai reiškia, kad 2 skirtingi 

stebėjimai su tuo pačiu spec_obj_ID turi turėti bendrą išvesties klasę) 

• class = objekto klasė (galaktika, žvaigždė arba kvazaras) 

• redshift (raudonasis poslinkis) = raudonojo poslinkio vertė, pagrįsta bangos ilgio 

padidėjimu 

• plate = plokštės ID, identifikuojantis kiekvieną SDSS plokštę 

• MJD = modifikuota Julijaus data, naudojama nurodyti, kada buvo paimta tam tikra 

SDSS duomenų dalis 

• fiber_ID = pluošto ID, identifikuojantis pluoštą, kuris nukreipė šviesą į židinio 

plokštumą kiekvieno stebėjimo metu 

 

2.2. Požymių ir objektų apdorojimas 
Pašalinti šie požymiai, nedarantys įtakos kosminio kūno klasifikavimui: 

• „obj_ID“ požymis, nes tai identifikacinis numeris nedarantis įtakos duomenims; 

• „alpha“ ir „delta“ požymiai nusako kosminio objekto poziciją, o jos nėra susijusios su 

skirtingų objektų (galaktikų, žvaigždžių, kvazarų) fizinėmis savybėmis; 

• „spec_obj_ID“ požymis, nes 2 skirtingi stebėjimai su tuo pačiu spec_obj_ID turi turėti 

bendrą išvesties klasę, o visos šio požymio reikšmės yra skirtingos; 

• „rerun_ID“ požymis, nes yra tik viena unikali reikšmė; 

• „MJD“ požymis, nes ji simbolizuoja datą, kada užfiksuotas stebėjimas 

Duomenų aibė neturėjo praleistų reikšmių. Tolimesniems uždaviniams pasirinkome „redshift“, 

„u“, „g“, „r“, „i“ ir „z“ požymius. 

Duomenų aibė turėjo vieną eilutę, kurioje „u“, „g“ ir „z“ reikšmės buvo -9999, tad šią triukšmo 

eilutę panaikinome. 

 

„Class“ požymis yra kategorinis požymis, kuris turi tris unikalias reikšmes duomenų aibėje: 

GALAXY – galaktika, QSO – kvazaras(ypač šviesus objektas galaktikos centre), STAR – 

žvaigždė. Kiekviena šių reikšmių buvo pakeista atitinkamai į skaičius 0, 1, 2.  
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2.3. Objektų atrinkimas 
Tolimesniam duomenų analizavimui, apdorojimui ir vizualizavimui buvo atsitiktinai atrinkti po 

1000 objektų iš kiekvienos klasės (2.2 pav.): 

 

2.2 pav. duomenų aibė su pasirinktais objektais 

2.4. Duomenų aibės normavimas 
Duomenų normavimui buvo parinkti šie požymiai: „redshift“, „u“, „g“, „r“, „i“ ir „z“. Kiti 

požymiai buvo nenormuoti, nes jie yra arba identifikaciniai („run_ID“, „field_ID“, „cam_col“, 

„plate“, ir „fiber_ID“) arba kategoriniai („class“). Duomenys buvo normuoti naudojant „min-

max“ metodą (2.3 pav.) 

 

2.3 pav. min-max metodu normuotos duomenų aibės statistika 

2.5. Sumažintos dimensijos duomenys 
 

Žemiau esančiame grafike (2.4 pav.) matome „t-SNE“ grafiką, pritaikytą atrinktiems požymiams. 

„tSNE“ metodo parametrų reikšmės: "max_iter" reikšmė lygi 750, o "perplexity" lygus 50, 

"metric" lygi "canberra", „random_state“ reikšmė lygi 42. Metodas „t-SNE“ buvo taikytas 

atsitiktinai 3000 paimtiems objektų, kai parametras „random_state“ lygus 2. Šiuo metodu 

sumažinta iki 2 dimensijų duomenų aibė yra naudojama tolimesniuose žingsniuose – pagrinde 

„kMeans“ ir „DBSCAN“ klasterizavimo metodų vaizdavimui. 
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2.4 pav. "t-SNE" metodu sumažintos dimensijos duomenys, kai pradinis atsitiktinis duomenų rinkinys 

sudarytas naudojant „random_state“ lygu 2. 

„DBSCAN“ klasterizavimui buvo naudojamas toks pat „t-SNE“ metodas, su tokiais pat 

parametrais, tačiau atsitiktiniai 3000 tiriamų objektų buvo paimti naudojant „random_state“ 42 (2.5 

pav.) Matoma, kad objektai pasiskirstę panašiai, tačiau, kaip bus matoma vėliau (skyrius 0   
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Algoritmo jautrumas mažiems duomenų aibės pokyčiams), tai gali daryti didelę įtaką 

klasterizavimui. 

 

2.5 pav. "t-SNE" metodu sumažintos dimensijos duomenys, kai pradinis atsitiktinis duomenų rinkinys 

sudarytas naudojant „random_state“ lygu 42. 

3. KLASTERIZAVIMAS 

3.1. „kMeans“ algoritmas/metodas 

3.1.1. Aprašymas 

kMeans (angl. „K-Means Clustering“) yra centroidų pagrindu veikiantis klasterizavimo 

algoritmas, kuris naudojamas grupėms (klasteriams) duomenyse identifikuoti pagal jų tarpusavio 

atstumus. Šis algoritmas priskiria taškus tam klasteriui, kurio centroidas yra arčiausiai, iteratyviai 

atnaujindamas centrų pozicijas, kol rezultatai stabilizuojasi. kMeans dažniausiai naudojamas tais 

atvejais, kai reikia aiškiai apibrėžtų klasterių, kurių skaičius (angl. „n_clusters“) nustatomas iš 

anksto. Dėl šios priežasties kMeans yra efektyvus, tačiau jo rezultatai labai priklauso nuo pradinio 

klasterių skaičiaus nustatymo. 

kMeans algoritme svarbiausi parametrai yra: 

• n_clusters: klasterių skaičius, kurį reikia iš anksto nustatyti pagal duomenų 

struktūrą arba optimizavimo metodus, tokius kaip Elbow ar Silhouette. 

• init: pradinis centroidų nustatymo metodas, pvz., „k-means++“, kuris pagerina 

algoritmo efektyvumą, sumažindamas pradinių pozicijų jautrumą. 

• max_iter: maksimalus iteracijų skaičius, per kurį centroidai optimizuojami. 

• tol: tolerancijos riba, nustatanti, kiek centroidų pokytis tarp iteracijų gali būti 

ignoruojamas. 

Šiuo atveju K-Means algoritmas buvo taikytas šioms normuotoms „min-max“ metodu 

duomenų aibėms: 



 

9 
 

• Pilnai duomenų aibei, ištrynus klasės požymį; 

• Duomenų aibei su atrinktais požymiais („u“, „g“, „r“, „i“, „z“, „redshift“); 

• Duomenų aibei su tais pačiais atrinktais požymiais, pritaikius „t-SNE“ metodą 

(dimensiškumo mažinimo metodą). 

Taip pat buvo pastebėta, kad „n_clusters“ reikšmė turi būti nustatoma itin atidžiai, nes 

netinkamas klasterių skaičius gali lemti prastą grupių atskyrimą. Optimalus klasterių skaičius 

buvo identifikuotas naudojant Elbow ir Silhouette metodus. 
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3.1.2. „n_clusters“ reikšmės nustatymas 

Norint, kad  „kMeans” metodas duotų reikšmingus rezultatus, svarbiausias parametras yra 

„n_clusters“. Šio parametro nustatymui naudojome 2 metodus – „Elbow“ ir „Silhouette“ 

Elbow metodo esmė – apskaičiuoti klaidų sumą (SSE, angl. „Sum of Squared Errors”) 

kiekvienam klasterių skaičiui ir ją atvaizduoti grafike. SSE yra rodiklis, kuris parodo, kiek 

duomenų taškai nutolę nuo savo klasterio centro. 

Kai klasterių skaičius didėja, SSE reikšmė mažėja, nes taškai yra arčiau savo klasterių centrų. 

„Elbow” metodo grafike dažnai pastebimas alkūnės taškas – vieta, kurioje SSE reikšmės 

mažėjimas sulėtėja. Šis taškas dažniausiai žymi optimalų klasterių skaičių, nes nuo šio momento 

didesnis klasterių skaičius neduoda reikšmingo pagerėjimo. 

Silueto metodas yra naudojamas įvertinti klasterizavimo kokybę ir nustatyti optimalų klasterių 

skaičių. Šis metodas remiasi silueto koeficientu, kuris parodo, kaip gerai kiekvienas taškas 

priskirtas savo klasteriui, palyginti su kitais klasteriais. 

 

3.1 pav. "Silhouette" reikšmių ir klasterių skaičiaus priklausomybės linijinė diagrama. 
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3.2 pav. "Elbow" reikšmių ir klasterių skaičiaus priklausomybės linijinė diagrama. 

„Elbow“ metode (3.2 pav.) matoma alkūnė, kai klasterių skaičius yra 3, t.y. esant daugiau nei 3 

klasteriams, klasterizavimas nesuteikia daug aiškesnio rezultato. 

„Silhouette“ metode (3.1 pav.) matoma, jog esant 3 klasteriams, „Silhouette“ skaičius yra 0.42, o 

esant 5 jis yra 0.51, t.y. didžiausias. Tai nėra optimaliausio klasterių skaičiaus suradimas, nes šie 

metodai buvo pritaikyti t-SNE dimensijų mažintiems duomenims, o šis metodas neišlaiko globalių 

atstumų tarp objektų, kas yra svarbu šiam metodui. Sekančiame punkte bus aiškiau matoma, kaip 

„Silhouette“ metodo skaičius pasikeičia ir yra rodoma, jog optimalus klasterių skaičius yra 3, kai 

jo analizė yra atliekama nemažintiems dimensijų duomenims (3.8 pav. - 3.1.5 skiltis). 
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3.1.3. Algoritmo taikymas sumažintos dimensijos duomenims 

Sekančiuose grafikuose atvaizduojami „kMeans“ algoritmai t-SNE metodu sumažintos 

dimensijos duomenims. 

Pirmasis grafikas(xx pav.) vaizduoja „n_clusters“ parametro pokytį. Matoma, jog efektyviausias 

rezultatas esant 3 klasteriams – sekančiuose grafikuose šis skaičius ir bus naudojamas. 

 

3.3 pav. "kMeans" klasterizavimas keičiantis "n_clusters" parametro reikšmėms. 

Sekantis grafikas – „init“ parametro keitimas (3.4 pav.). Pasirinkus „k-means++“ reikšmę 

klasterių centrai yra optimalesnėse vietose, nei naudojant „random“. 

 

3.4 pav. "kMeans" klasterizavimas keičiant "init" parametro reikšmes. 

Sekantys 2 grafikai(3.5 pav. ir 3.6 pav.) vaizduoja „max_iter“ ir „tol“ reikšmių pokyčius, tačiau 

šie parametrai „kMeans“ rezultato nepakeičia. 
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3.5 pav. "kMeans" klasterizavimas keičiant "tol" parametro reikšmes. 

 

3.6 pav. "kMeans" klasterizavimas keičiant "max_iter" parametro reikšmes. 

Tolimesnei analizei buvo pasirinkti šie parametrai: „n_clusters“ lygus 3, „init“ lygus „k-

means++“, „tol“ lygus „0.0001“ ir „max_iter“ lygus 300.  
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3.1.4. Algoritmo taikymas prieš mažinant dimensijas. 

Naudojant tuos pačius optimalius parametrus(„n_clusters“ = 3; „init“ = „k-means++“) sekančiame 

grafike(3.7 pav.) yra matomas grafikas, kuris buvo gautas pirma atliekant „kMeans“ 

klasterizavimą, ir tik tada t-SNE dimensijos mažinimą rezultatų atvaizdavimui 2D ašyse. Matoma, 

kad klasterių pozicijos skiriasi nuo klasterizavimo, pirma darant t-SNE. 

Akivaizdu, jog dimensijų mažinimas prieš klasterizavimą ar po jo turi didelę įtaką rezultatams – 

šiai duomenų aibei su specifiškais parametrais pirma atliekant dimensijų mažinimą, gaunamų 

klasterių centrų pozicijos yra tikslesnės.   

 

3.7 pav. "kMeans" klasterizavimas prieš taikant "t-SNE" metodą. 
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3.1.5. Silueto rodiklis 

 

3.8 pav. Siluetų metodo rodiklis keičiantis klasterių skaičiui. 

Aukščiau esančiame grafike(3.8 pav.) yra matomi „Silhouette“ algoritmo rezultatai, kai šiam 

algoritmui yra naudojami originalūs, nesumažintų dimensijų duomenys. Kai „n_clusters“ reikšmė 

lygi 3, Silueto rodiklio reikšmė yra didžiausia. Šis klasterių kiekis sutampa su „elbow“ metodu 

gautu klasterių kiekiu ir su vizualiai matomu klasterių kiekiu, tad galima daryti išvadą, jog šiai 

duomenų aibei optimalus klasterių kiekis yra 3. 

Šie rezultatai, lyginant su pradžioje gautu “Silhouette” grafiku(pav. 3.1.2 skyriuj ten), yra tikslūs. 

Kai naudojamas silueto algoritmas nemažinant dimensijų(3.8 pav.), atstumai tarp objektų pozicijų 

išlieka originalūs, o tai yra svarbu šiam algoritmui. 
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3.1.6. Klasterizavimo tikslumas 

 

 

3.9 pav. “t-SNE” dimensijų mažinimo ir “kMeans” klasterizavimo grafikai, jų persidengimo grafikas. 

3.9 pav. pateikiami grafikai, kuriuose matoma „t-SNE“ dimensijų mažinimo, „kMeans“ 

klasterizavimo ir jų persidengimo grafikai: 

Pirmas grafikas kairėje su klasėmis, gautomis iš „t-SNE“ dimensijų mažinimo algoritmo, 

antras grafikas viduryje vaizduoja „kMeans” klasterizavimo rezultatą ir trečias grafikas dešinėje 

– šių grafikų persidengimą(atitikimas – pilka spalva pažymėti objektai, neatitikimas – raudona). 

Matoma, jog 8.13% objektų, klasterizuotų su „kMeans“, neatitiko su klasėmis, lyginant su „t-

SNE“ rezultatais. 

Galima pastebėti, kurie objektai po „kMeans“ klasterizavimo neatitinka, lyginant su klasėmis iš 

„t-SNE“(3.16 pav.). 0 klasės objektų yra 146, 1 klasės – 97, ir 2 klasės tik 1. Tai reiškia, jog 

„kMeans“ klasterizavimas pasirinktais parametrais 2 klasę klasterizavo beveik tobulai, tačiau 0 ir 

1 klasėse buvo neatitikimų. 

 

Pav. 3.16. Klasių pasiskirstymas klasterizavimo rezultatuose, kai klasterių objektai neatitinka 

klasių. 

 

  



 

17 
 

3.1.7. Išvados 

Atlikus klasterizavimo analizę naudojant „kMeans“ algoritmą, nustatyta, kad optimalus 

klasterių skaičius mūsų pasirinktai duomenų aibei yra 3. Tokią pačią išvadą galima daryti ir 

panaudojus „Elbow“ metodą sumažintos dimensijos duomenų rinkiniui ir „Silhouette“ metodą 

nesumažintos dimensijos duomenų rinkiniui, abiejų rezultatai sutampa – optimalus klasterių 

skaičius yra 3. Geriausi rezultatai pasiekiami su parametrais, kai „n_clusters“ lygus 3 ir „init“ 

lygus „k-means++“. Likę parametrai didelės įtakos rezultatams nedarė.  

Taip pat buvo pastebėta, jog naudojant „t-SNE“ algoritmu sumažintos dimensijos rezultatus 

klasteriai buvo aiškiai atskirti, tačiau klasterių pozicijos skiriasi priklausomai nuo to, ar „t-SNE“ 

buvo atliktas prieš klasterizavimą, ar po jo. Klasterizavimas parodė, jog „kMeans“ efektyviai 

identifikuoja pagrindines duomenų grupes, tačiau neatitikimai (apie 8.13%) su tikrosiomis 

klasėmis rodo, kad kai kurie taškai yra sunkiai klasifikuojami dėl jų panašumo į skirtingus 

klasterius(dėl klasių persidengimo). Optimalūs rezultatai buvo gauti pašalinus išskirtis ir tinkamai 

normalizavus duomenis, o tai sustiprino klasterių atsiskyrimą ir pagerino modelio tikslumą. 

Taip pat buvo pastebėtas klasterių nestabilumas. Naudojant kitokią „seed“ reikšmę 

duomenų normavimo žingsnyje, atsitiktinių objektų pasirinkimo žingsnyje ar dimensijos 

mažinimo žingsnyje algoritmas gali klasterizuoti duomenis kitaip, tokiu atveju neatitikimo su „t-

SNE“ klasėmis procentas būtų daug didesnis nei 8.13%. 
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3.2. „DBSCAN“ algoritmas/metodas 

3.2.1. Aprašymas 

DBSCAN (angl. „Density-Based Spatial Clustering of Applications with Noise“) yra tankiu 

pagrįstas klasterizavimo algoritmas, kuris naudojamas identifikuoti grupes (klasterius) 

duomenyse pagal jų tankį. Algoritmas yra efektyvus aptinkant įvairių formų ir dydžių klasterius, 

kuriuose gali neiškarto matytis atskiros taškų grupės. Taip pat, jis automatiškai nustato triukšmo 

taškus (angl. „outliers“). „DBSCAN“ neskiria fiksuoto skaičiaus klasterių, kaip tai daro kai kurie 

kiti algoritmai (pvz., K-means). Vietoj to, klasterių skaičius priklauso nuo duomenų struktūros ir 

jų tankumo. 

„DBSCAN“ svarbiausi du parametrai yra: 

• eps (epsilon): atstumas, kuris nustato, kaip arti taškai turi būti vienas kito, kad jie būtų 

laikomi to paties klasterio dalimi. 

• min_samples: minimalus taškų skaičius, reikalingas klasteriui suformuoti. 

 

Šiuo atveju „DBSCAN“ algoritmas buvo taikytas šioms normuotoms „min-max“ metodu 

duomenų aibėm: 

• pilnai duomenų aibei, ištrynus klasės požymį; 

• duomenų aibei su atrinktais požymiais („u“, „g“, „r“, „i“, „z“, „redshift“); 

• duomenų aibei su tai pačiais atrinktais požymiais, pritaikius „t-SNE“ metodą 

(dimensiškumo mažinimo metodą). 
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3.2.2. Algoritmo taikymas sumažintos dimensijos duomenims 

 „DBSCAN“ klasterizavimo algoritmas su skirtingais parametrais taikytas normuotai duomenų 

aibei su atrinktais požymiais („u“, „g“, „r“, „i“, „z“, „redshift“) ir „t-SNE“ metodo pagalba 

sumažintos dimensijos iki 2 duomenims suteikė prasmingą vizualizaciją. 

Galima pastebėti, kad ir nežymus „eps“ parametro reikšmės didėjimas ženkliai sumažina klasterių 

kiekį. Kai „min_samples“ parametro reikšmė išlieka ta pati, o „eps“ reikšmė lygi 1.5 (3.10 pav.) 

susidaro 20 klasterių (įskaitant triukšmo klasterį), padidėjus „eps“ reikšmei iki 2.6 (3.11 pav.) 

susidaro 4 klasteriai, o dar padidinus iki 3.5 (3.12 pav.) susidaro tik du klasteriai – kadangi „eps“ 

reikšmė didelė, taškai ir jų grupės turi tarpusavyje būti pakankamai toli, kad būtų jas galima 

atskirti į klasterius. 

 

3.10 pav. "DBSCAN" klasterizavimas. "eps" vertė 1.5, "min_samples" vertė 5. 
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3.11 pav. "DBSCAN" klasterizavimas. "eps" vertė 2.6, "min_samples" vertė 5 

 

3.12 pav. "DBSCAN" klasterizavimas. "eps" vertė 3.5, "min_samples" vertė 5 
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Akivaizdi „min_samples“ parametro įtaka duomenims: kai „eps“ parametro reikšmė tokia 

pati, tačiau „min_samples“ kiekis padidėja iš 5 (3.13 pav.) į 10 (3.14 pav.), klasterių kiekis 

padidėja nuo 20 iki 32 klasterių (įskaitant triukšmo klasterį). Tą patį galima pastebėti ir kai „eps“ 

reikšmė lygi 2.6, o „min_samples“ kiekis padidėja dvigubai (3.11 pav. ir 3.14 pav.) – klasterių 

kiekis irgi padidėja, bet tik iš keturių į penkis klasterius. 

 

 

 

3.13 pav. "DBSCAN" klasterizavimas. "eps" vertė 1.5, "min_samples" vertė 10 
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3.14 pav. "DBSCAN" klasterizavimas. "eps" vertė 2.6, "min_samples" vertė 10 

Taigi, „DBSCAN“ algoritmo parametrų: didesnės „eps“ reikšmės lems mažiau klasterių, o 

didesnės „min_sample“ reikšmės lems daugiau klasterių, reikia atrasti tinkamą balansą tarp šių 

reikšmių, norint, kad algoritmas veiktų teisingai. 

 

3.2.3. Algoritmo taikymas normuotoms duomenų aibėms 

„DBSCAN“ algoritmo rezultatas normuotai duomenų aibei, neatrinkus pagrindinių požymių, bet 

išmetus visiškai nereikšmingus požymius ir klasės požymį, neduoda jokios informacijos. Šis 

algoritmas pilnai duomenų aibei buvo taikytas su įvairiausiais parametrais [..., ...]. Visada 

gaunamas tas pats rezultatas – vienas didelis klasteris. 

„DBSCAN“ algoritmas taip pat buvo bandytas taikyti normuotai duomenų aibei atrinktiems 

požymiams ( „z“, „i“, „r“ ). Šį kartą algoritmas suklasterizavo duomenų aibę, tačiau rezultatai 

neduoda jokios naudingos informacijos. Tai galime spręsti tiek iš žemiau esančių grafikų, tiek iš 

Siluetų metodo rodiklių (pav. XX). Nors aukštesni rodikliai, turėtų rodyti geresnius grafikus, 

tačiau pritaikius „t-SNE“ metodą, lengvesniam klasterizuotų duomenų atvaizdavimui, 

„DBSCAN“ algoritmo parametrai su aukštesnėmis Silueto rodiklio vertėmis rodo prastesnius 

grafikus. Taip pat matome, kad aukščiausios Silueto rodiklio vertės siekia vos daugiau negu 0.1, 

o tai yra labai nedaug. Šiuo atveju, geriausiai grafikai atrodo esant mažiausioms „Silhouette“ 

rodiklio vertėms, t.y. kai jos yra apie -0.6. 
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3.15 pav. "Silhouette" metodo reikšmių priklausomybės nuo "min_samples" ir "eps" parametrų reikšmių 

taškinė diagrama 

 

3.16 pav. "DBSCAN" klasterizavimas. "eps" vertė 0.01, "min_samples" vertė 5 
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3.17 pav. "DBSCAN" klasterizavimas. "eps" vertė 0.05, "min_samples" vertė 5 

Akivaizdu, kad pirmu atveju gaunamas rezultatas (3.16 pav.), kai „eps“ vertė lyg 0.01, o 

„min_samples“ vertė lygi 5, turi ženkliai per daug klasterių, esančių sąlyginai mažame plote, ir 

didžioji dalis objektų (net 2914 objektų) buvo priskirti triukšmui. Antroje diagramoje (3.17 pav.), 

kai „eps“ vertė lyg 0.05, o „min_samples“ vertė lygi 5, matome nemažą kiekį objektų priskirtų 

triukšmui (317), tačiau beveik visi objektai (2670) yra nuspalvinti žaliai, t.y. priskirti klasteriui  

„Cluster 0“, ir beveik nėra objektų priskirtų „Cluster 1“ (tik 8 objektai). 

Taigi, galime daryti išvadas, kad “DBSCAN” klasterizavimo algoritmo taikymas šiai 

duomenų aibei yra netikslingas. Negauname jokių rezultatų su visus požymius turinčia duomenų 

aibe (visi objektai priklauso vienai aibei), ir gauname jokios naudingos informacijos 

neduodančius rezultatus su duomenų aibe, kurioje yra atrinkti požymiai - daugiau nei 85% objektų 

yra priskirti triukšmui arba vienai duomenų aibei. 
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3.2.4. Klasterizavimo tikslumas 

Palyginus pradinės duomenų aibės klases ir „DBSCAN“ priskirtas etiketes („labels“) galime 

palyginti kokia dalis taškų buvo nustatyta teisingai. Rezultatų palyginimui buvo naudotas 

optimaliai suklasterizuoti duomenys, kai „DBSCAN“ parametrai „eps“ yra lygus 2.6, o 

„min_samples“ lygus 5. 

 

3.18 pav. optimaliai suklasterizuoti naudojantis „DBSCAN“ 

„Cluster 0“ atitinka klasę 0 (žvaigždė), „Cluster 1” atitinka klasę 0 (galaktika) ir „Cluster 2” 

atitinka klasę 2 (kvazaras), „Cluster 3“ neatitinka jokios klasės (3.18 pav.). 

Atlikus skaičiavimus buvo rasta, kad „DBSCAN“ neteisingai suklasterizavo 188 objektus, t.y. 

~6.26% visų atrinktų objektų buvo priskirta klaidinga klasė. Galima teigti, kad šio algoritmo, kai 

jo parametrai „eps“ yra lygus 2.6, o „min_samples“ kiekis yra lygus 5, tikslumas yra 93.74%. 

Šiame grafike, matome taškus, kurie buvo priskirti ne tai klasei (grafike taškai nuspalvinti ta 

spalva, kuriai klasei jie turėtų priklausyti pagal originalią duomenų aibę, o „DBSCAN“ algoritmo 

buvo priskirti ne tai klasei).  

Galima pastebėti, kad „DBSCAN“ algoritmas daliai objektų priskyrė kitokias etiketes, negu yra 

to objekto realios klasės. Viena iš to priežasčių yra ir ne 100% tikslus „tSNE“ algoritmo – apatiniai 

violetiniai taškai (3.19 pav.), turėtų priklausyti klasei 0, tačiau ir „tSNE“ vizualizacijoje, yra 

matyti, kad šie taškai priskirti pirmos klasės grupei. Todėl pačio „DBSCAN“ algoritmo tikslumas 

galimai būtų didesnis, jei visi taškai būtų teisingiau sugrupuoti „tSNE“ algoritmo. 
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3.19 pav. "DBSCAN" suklasterizuoti objektai, kurių etiketės nesutampa su objektų klasėmis. Objektai 

nuspalvinti pagal jų klases. 

 

3.20 pav. "DBSCAN" suklasterizuoti objektai, kurių etiketės sutampa su objektų klasėmis. Objektai 

nuspalvinti pagal jų klases. 
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Tačiau yra matomas didelis ir aiškus objektų grupių atsiskyrimas žiūrint tik į teisingai atskirtus 

taškus žemiau (3.20 pav.) 

 

Klasterizuotų ir neklasterizuotų duomenų aibės, jų aprašomosios statistikas pagal klases ir jas 

atitinkančias etiketes (angl. „label“) yra labai panašios, nes neatitinkančių taškų kiekis yra mažas 

ir pakankamai pasiskirstęs tarp klasių. Kaip pavyzdį, galime palyginti „redshift“ požymį 

stačiakampėmis diagramomis (3.21 pav.). Akivaizdu, kad „redshift“ reikšmės ir jų pasiskirstymas 

tarp skirtingų klasių yra beveik toks pat kaip ir tarp skirtingų klasterių etikečių. Vieninteliai du 

aiškiai matomi skirtumai, yra ketvirtos etiketės atsiradimas, tačiau jai priklauso tik 15 taškų ir jos 

reikšmių vidurkis yra arti visų taškų reikšmių vidurkio. Taip pat klasė 0, po klasterizavimo 

nebeteko išskirčių (angl. „outliers“). Labai panašią informaciją gausime ir lyginant kitus aktualius 

požymius („z“, „i“, „r“, „g“, „u“). 

 

3.21 pav. stačiakampės diagramos lyginančios „redshift“ reikšmių pasiskirstymą tarp priskirtų etikečių ir 

originalių klasių. 

 

Taigi, tiksliausiai veikiančio „DBSCAN“ algoritmo parametrai „eps“ ir „min_samples“ yra lygūs 

atitinkamai 2.6 ir 5. Jis teisingai suklasterizuoja 93.74% visų šios duomenų aibės objektų. Dalis 

šios aibės objektų (15 objektų) buvo priskirti neegzistuojančiai naujai klasei, likę objektai buvo 

priskirti klaidingai klasei (173 objektai). 
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3.2.5. Algoritmo jautrumas mažiems duomenų aibės pokyčiams 

Štai čia matome „t-SNE“ algoritmo pritaikymą ir vizualizaciją šiek tiek kitokiems duomenims: 

buvo paimti po 1000 atsitiktinių objektų iš kiekvienos klasės, tačiau naujo parametro 

„random_seed“ reikšmė lygi 2 , todėl buvo paimti šiek tiek kitokie objektai ir naujai duomenų 

aibei pritaikius „t-SNE“ metodą su tokiais pat parametrais („perplexity“ lygi 50, o „max_iter“ 

lygus 750)  vizualizacija nežymiai skiriasi (3.22 pav.). 

 

3.22 pav. "t-SNE" metodo taikymas atsitiktinai atrinktiems duomenims, kai "random_seed" reikšmė  yra 

lygi 2. 

Palyginus naujos ir buvusios duomenų aibių klasterizavimą „DBSCAN“ algoritmu su sąlyginai 

geriausiais parametrais (išrinkus iš poskyryje „3.1.2” vaizduotų grafikų optimalaus grafiko 

parametrus), prieš tai pritaikius „t-SNE“ dimensijų mažinimo metodą, matome didelius skirtumus 

grafikuose (3.23 pav. ir 3.24 pav.) 
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3.23 pav. "DBSCAN" klasterizavimas atsitiktinai atrinktiems duomenims, kai "random_seed" reikšmė 

lygi 2. "eps" vertė 2.6, "min_samples" vertė 5. 

 

3.24 pav. "DBSCAN" klasterizavimas atsitiktinai atrinktiems duomenims, kai "random_seed" reikšmė 

lygi 42. "eps" vertė 2.6, "min_samples" vertė 5. 
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Naudojant tuos pačius parametrus panašiai duomenų aibei, galime gauti labai skirtingus 

rezultatus. Šiuo atveju, visus taškus, priklausančius 0 ir 1 klasėms, atitinkančius klasterius sujungė 

į vieną klasterį, o dalį 2 klasę atitinkančio klasterio taškų priskyrė naujam klasteriui. Viso 

klaidingai priskirta 1194 objektai. Šiame pavyzdyje labai aiškiai galime pamatyti, kad 

„DBSCAN“ algoritmas objektus jungia į klasterius pagal jų tarpusavio tankį ir nežymus pokytis 

tarp objektų atstumų, šiuo atveju sumažino tikslumą nuo 94.3% iki vos 60.2%.  

Taigi, galima teigti, kad kiekvienai duomenų aibei gali tekti ieškoti ir taikyti naujus „DBSCAN“ 

parametrus, net jei iš pirmo žvilgsnio duomenų aibių aprašomoji statistika yra panaši, abi aibės 

turi po tiek pat objektų ir jų vizualizacijos atrodo panašiai. 

 

3.2.6. Išvados 

Nustatant šiuos parametrus buvo pastebėta, kad didėjančios „eps“ reikšmės mažina klasterių 

kiekį, nes vis daugiau taškų priskiria tam pačiam klasteriui, o didėjančios „min_samples“ 

reikšmės didina klasterių kiekį. 

Taip pat buvo pastebėta, kad nežymus pokytis objektų aibėje lemia truputi kitokį taškų 

pasiskirstymą panaudojus dimensijos mažinimo metodą, ir dėl didesnio mažo kiekio taškų tankio 

„DBSCAN“ algoritmas su tais pačiais parametrais veikia stebėtinai prasčiau - visiškai 

nebeatskiria taškų priklausančių dviem klasėm. 

Geriausias „DBSCAN“ grafikas, kuris optimaliai priskiria objektus klasteriam yra 

pritaikytas sumažintos dimensijos „t-SNE“ metodo pagalba duomenim. Šiuo atveju parametrai 

„eps“ yra lygus 2.6, „min_samples“ yra lygus 5 ir algoritmas teisingai suklasterizavo 93.4% 

objektų. 
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4. IŠVADOS 

Atlikus klasterizavimo analizę naudojant „kMeans“ ir „DBSCAN“ metodus, įvertinta, kad 

kiekvienas algoritmas turi savo privalumų ir trūkumų, priklausomai nuo duomenų struktūros ir 

pasirinktų parametrų. Naudojant „kMeans“, optimalus klasterių skaičius buvo nustatytas kaip 3, 

o geriausi rezultatai pasiekti su parametrais „n_clusters“ = 3 ir „init“ = „k-means++“. Duomenų 

normalizavimas ir išskirčių pašalinimas ženkliai pagerino klasterių atskyrimą ir buvo pasiektas 

91.87% tikslumas.  

Naudojant „DBSCAN“ algoritmą, buvo nustatyta, kad parametrų „eps“ ir „min_samples“ 

reikšmės stipriai veikia klasterių susidarymą: didesnės „eps“ reikšmės sumažina klasterių skaičių, 

o didesnės „min_samples“ reikšmės jį padidina. Išanalizuota, kad algoritmas veikė geriausiai, kai 

buvo pritaikytas „t-SNE“ metodu sumažintiems duomenims, ir su optimaliais parametrais „eps“ 

= 2.6, „min_samples“ = 5 buvo pasiektas 93.4% tikslumas. Tačiau pastebėta, kad mažas duomenų 

pokytis ar nedideli taškų tankio skirtumai gali reikšmingai paveikti klasterizacijos rezultatus, tai 

rodo klasterių nestabilumą. Tačiau visais atvejais „DBSCAN“ algoritmas sumažintos dimensijos 

duomenyse atskyrė objektus priklausančius „Cluster 2“ (4.1 pav.) objektų grupei nuo likusių 

objektų. 

Apibendrinant, eksperimentų rezultatai rodo, kad atitaikius parametrus abu algoritmai 

pakankamai tiksliai suklastetrizuoja objektus į grupes atitinkančias objektų klases, tačiau 

„DBSCAN“ algoritmas šiai duomenų aibei (4.1 pav.) buvo nežymiai tikslesnis – 93.4%. Taip pat, 

nustatytas svyruojantis klasterių stabilumas – „Cluster 2“ objektų grupė visada atskiriama taikant  

„DBSCAN“ metodą, tačiau ne visada naudojant „kMeans“ metodą. 

 

4.1 pav. Sumažintos dimensijos, optimaliai suklasterizuoti duomenys naudojantis „DBSCAN“ 
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ŠALTINIAI 

• https://scikit-learn.org/stable/modules/clustering.html 

• https://machinelearningmastery.com/clustering-algorithms-with-python/ 

• https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html 

• https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.KMeans.html 

• https://pandas.pydata.org/docs/ 

• https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss1 
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KODAS 

#!/usr/bin/env python 

# coding: utf-8 

 

# In[1]: 

 

# importing libraries 

 

# libraries for file manipulation 

import pandas as pd 

import numpy as np 

 

# libraries for easier visualisation 

import matplotlib.pyplot as plt 

import matplotlib.colors as mcolors 

import seaborn as sns 

 

# libraries for dimensionality reduction 

import scipy.stats as stats 

from sklearn import manifold 

from sklearn.decomposition import TruncatedSVD 

from sklearn.cluster import KMeans, DBSCAN, HDBSCAN, AgglomerativeClustering 

from sklearn.mixture import GaussianMixture 

from sklearn.metrics import silhouette_score 

 

#from sklearn import metrics 

from matplotlib import cm 

# setting options 

pd.set_option('display.max_columns', None) 

pd.set_option('float_format', '{:f}'.format) 

 

# In[2]: 

 

# importing dataset 

df_orig = pd.read_csv("star_classification.csv", delimiter=',') 

 

# ## Preparing data 

 

# In[3]: 

 

df_orig.drop(columns=['obj_ID', 'alpha', 'delta', 'spec_obj_ID', 'rerun_ID', 'MJD'], 

inplace=True) 

 

# In[4]: 

 

# panaikinti ekstremalių atsiskyrėlių vieną eilutę, kurioje reikšmės yra -9999 

df_orig = df_orig[(df_orig[['u', 'g', 'r', 'i', 'z']] != -9999).all(axis=1)] 

 

# encoding labels 

df_orig.replace(['GALAXY', 'QSO', 'STAR'], [0, 1, 2], inplace=True) 

 

# Set a random seed for reproducibility 

# random_seed = 42 for DBSCAN reproduction, 2 for kMeans reproduction 

# random_seed = 42 

random_seed = 2 

# Sample 1,000 instances per class with a fixed seed 

#df = df_orig.groupby('class', group_keys=False).apply(lambda x: 

x.sample(n=1000)).reset_index(drop=True) 

df = df_orig.groupby('class', group_keys=False).apply(lambda x: x.sample(n=1000, 

random_state=random_seed)).reset_index(drop=True) 

 

# kiti masyvai nebuvo normalizuot, nes jie buvo pavadinimai, kampo laipsniai, 

kategorijos ar ID 

normalization_cols = ['redshift', 'u', 'g', 'r', 'i', 'z'] 
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# normavimas 

dfminmax = df.copy() 

for col in normalization_cols: 

 

    #min-max normalization 

    dfminmax[col] = (dfminmax[col] - dfminmax[col].min()) / (dfminmax[col].max() - 

dfminmax[col].min()) 

 

# In[5]: 

 

dfminmax.columns 

 

# In[6]: 

 

feature_cols = ['redshift', 'u', 'g', 'r', 'i', 'z'] 

no_class_col = ['u', 'g', 'r', 'i', 'z', 'run_ID', 'cam_col', 'field_ID', 'redshift', 

'plate', 'fiber_ID'] 

data = dfminmax[feature_cols].values 

data_full = dfminmax[no_class_col].values 

 

# ## Dimensionallity reduction tSNE 

 

# In[7]: 

 

tsne = manifold.TSNE(n_components=2, 

    perplexity=50, 

    n_iter=750, 

    metric='canberra', 

    random_state=42) 

data_tsne = tsne.fit_transform(dfminmax[feature_cols].values) 

 

plt.figure(figsize=(10, 8))  # Set the figure size 

 

class_labels = ["Galaktika (0)", "Kvazaras (1)", "Žvaigždė (2)"] 

class_values = [0, 1, 2] 

colors = cm.viridis(np.linspace(0, 1, len(class_values))) 

 

for val, label, color in zip(class_values, class_labels, colors): 

    class_mask = dfminmax['class'] == val 

    plt.scatter(data_tsne[class_mask, 0], data_tsne[class_mask, 1], color=color, 

label=label, alpha=0.7) 

 

plt.title("t-SNE", fontsize=20) 

plt.xlabel('t-SNE Dimensija 1', fontsize=18) 

plt.ylabel('t-SNE Dimensija 2', fontsize=18) 

plt.legend(loc="lower right", fontsize=16) 

 

# Show the plot 

plt.show() 

 

# ## Clustering 

 

# ### DBSCAN 

 

# #### Defining functions 

 

# In[127]: 

 

def dbscan_plot_one(X, params): 

    # Initialize and fit DBSCAN with the provided parameters 

    dbscan = DBSCAN(**params) 

    labels = dbscan.fit_predict(X) 

     

    # Plot the clusters 

    plt.figure(figsize=(10, 8)) 

    scatter = plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.7) 
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    # Set title 

    plt.title(f"DBSCAN: eps={params['eps']}, min_samples={params['min_samples']}", 

fontsize=16) 

     

    # Add legend if there are fewer than 10 unique labels 

    unique_labels = np.unique(labels) 

    if len(unique_labels) < 10: 

        labels_list = [] 

        for label in unique_labels: 

            if label == -1: 

                # Outliers in grey 

                labels_list.append(plt.scatter([], [], color='grey', label='Outlier')) 

            else: 

                # Use the colormap for cluster labels 

                color = scatter.cmap(label / (max(unique_labels) if max(unique_labels) 

> 0 else 1)) 

                labels_list.append(plt.scatter([], [], color=color, label=f'Cluster 

{label}')) 

         

        # Add legend with labels 

        plt.legend(handles=labels_list, loc='lower right') 

 

    # Set axis labels and remove ticks 

    plt.xlabel('Feature 1') 

    plt.ylabel('Feature 2') 

    plt.xticks([]) 

    plt.yticks([]) 

     

    plt.tight_layout() 

    plt.show() 

 

    return labels 

 

def dbscan_plot_2d(X, parameters): 

    # Create a figure with six subplots arranged vertically 

    fig, axes = plt.subplots(2, 3, figsize=(20, 12)) 

    axes = axes.flatten() 

     

    # Loop through each set of parameters and corresponding axis 

    for ax, params in zip(axes, parameters): 

        # Initialize and fit DBSCAN with the current parameters 

        dbscan = DBSCAN(**params) 

        labels = dbscan.fit_predict(X) 

         

        # Plot the clusters 

        scatter = ax.scatter( 

            X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.7 

        ) 

         

        # Set title 

        ax.set_title( 

            f"DBSCAN: eps={params['eps']}, min_samples={params['min_samples']}", 

            fontsize=12 

        ) 

         

        # Add legends to each subplot if there are fewer than 10 unique labels 

        unique_labels = np.unique(labels) 

        if len(unique_labels) < 10: 

            # I cant create labels for legend globally somewhy, so I need to add to 

the list of labels each time seperately 

            labels_list = [] 

            for label in unique_labels: 

                if label == -1: 

                    # Outliers in grey 
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                    labels_list.append(ax.scatter([], [], color='grey', 

label='Outlier')) 

                else: 

                    # Use the colormap for cluster labels 

                    color = scatter.cmap(label / (max(unique_labels) if 

max(unique_labels) > 0 else 1)) 

                    labels_list.append(ax.scatter([], [], color=color, label=f'Cluster 

{label}')) 

             

            # Add legend with labels 

            ax.legend(handles=labels_list, loc='lower right') 

         

        # Set axis labels and remove ticks 

        ax.set_xlabel('Feature 1') 

        ax.set_ylabel('Feature 2') 

        ax.set_xticks([]) 

        ax.set_yticks([]) 

     

    plt.tight_layout() 

    plt.show() 

 

def dbscan_tsne_plot(X, dbscan_params=None): 

 

    # run DBSCAN 

    dbscan = DBSCAN(**dbscan_params) 

    labels = dbscan.fit_predict(X) 

 

    # reduce data to 2D using tSNE 

    tsne = manifold.TSNE(n_components=2, 

                        perplexity=50, 

                        n_iter=750, 

                        metric='canberra', 

                        random_state=42) 

    data_tsne = tsne.fit_transform(X) 

 

    # plot the data 

    plt.figure(figsize=(12, 8)) 

 

    # Number of clusters in labels, ignoring noise if present (-1 label) 

    unique_labels = set(labels) 

    n_clusters = len(unique_labels) - (1 if -1 in labels else 0) 

 

    # Generate colors for the clusters 

    colors = cm.nipy_spectral(np.linspace(0, 1, n_clusters)) 

 

    # Plot each cluster 

    for k, col in zip(sorted(unique_labels), colors): 

        if k == -1: 

            # Black color for noise 

            col = [0, 0, 0, 1] 

            label_name = 'Noise' 

        else: 

            label_name = f'Cluster {k}' 

 

        class_member_mask = (labels == k) 

        xy = data_tsne[class_member_mask] 

 

        plt.scatter( 

            xy[:, 0], 

            xy[:, 1], 

            c=[col], 

            label=label_name, 

            edgecolors='k', 

            alpha=0.7, 

            s=50 

        ) 
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    plt.title('DBSCAN Clustering with t-SNE Visualization', fontsize=16) 

    plt.xlabel('t-SNE Dimension 1', fontsize=14) 

    plt.ylabel('t-SNE Dimension 2', fontsize=14) 

    plt.legend(loc='best', fontsize=12) 

    plt.grid(True) 

    plt.show() 

 

    return labels 

 

# #### DBSCAN for reduced data 

 

# In[128]: 

 

# params for tSNE data  

dbscan_params = [ 

    {'eps': 1.5, 'min_samples': 5}, 

    {'eps': 2.6, 'min_samples': 5}, 

    {'eps': 3.5, 'min_samples': 5}, ## geras 

    {'eps': 1.5, 'min_samples': 10}, 

    {'eps': 2.6, 'min_samples': 10}, 

    {'eps': 3.5, 'min_samples': 10} 

] 

 

dbscan_plot_2d(data_tsne, dbscan_params) 

 

# In[129]: 

 

label_list = [] 

for param in dbscan_params: 

    labels = dbscan_plot_one(data_tsne, param) 

    label_list.append(labels) 

 

# In[130]: 

 

for label in label_list: 

    print(np.unique(label)) 

 

# #### DBSCAN for not reduced data (cia oof grafikai xd) 

 

# In[131]: 

 

labels = dbscan_plot_one(data_tsne, {'eps': 2.1, 'min_samples': 5, 'metric': 

'cosine'}) 

 

# In[132]: 

 

dbscan_params = { 

    'eps': 0.01, 

    'min_samples': 5 

} 

 

labels = dbscan_tsne_plot(data, dbscan_params) 

 

# In[133]: 

 

dbscan_params = { 

    'eps': 0.25, 

    'min_samples': 18 

} 

 

labels2 = dbscan_tsne_plot(data, dbscan_params) 

 

# In[134]: 

 

np.unique(labels) 
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# In[135]: 

 

pd.DataFrame(labels2).value_counts() 

 

# In[ ]: 

 

 

 

 

# In[136]: 

 

dbscan_params = { 

    'eps': 2, 

    'min_samples': 15 

} 

 

dbscan_tsne_plot(data_full, dbscan_params) 

 

# neveikia, reikes parodyt, kad ant data_full sitas algo tsg neveikia:D 

 

# #### Evaluating clustering results 

 

# In[137]: 

 

########## duomenu aibe su atrinktais duomenim ########## 

# Finding optimal eps  

 

scores_list = [] 

 

# Finding optimal eps and min_samples 

for _eps in np.arange(0.001, 0.25, 0.02): 

    for _min_sample in np.arange(2, 20, 2): 

        dbscan = DBSCAN(eps=_eps, min_samples=_min_sample) 

        labels = dbscan.fit_predict(data) 

 

        # Make sure there is more than one cluster 

        if len(set(labels)) > 1: 

            sil_score = silhouette_score(data, labels) 

             

            # Save the parameters and scores 

            scores_list.append({ 

                'eps': _eps, 

                'min_samples': _min_sample, 

                'silhouette_score': sil_score, 

            }) 

    print('round done') 

 

scores_df = pd.DataFrame(scores_list) 

 

# In[138]: 

 

#### PLOTTING SCORES #### 

# Plot Silhouette Score 

plt.figure(figsize=(12, 6)) 

scatter = plt.scatter(scores_df['eps'], scores_df['min_samples'], 

c=scores_df['silhouette_score'], cmap='viridis') 

colorbar = plt.colorbar(scatter) 

colorbar.set_label('Silhouette Score', fontsize=13) 

plt.xlabel('eps', fontsize = 14) 

plt.ylabel('min_samples',  fontsize = 14) 

plt.title('Silhouette Score for Different DBSCAN Parameters', fontsize = 16) 

plt.show() 

 

# In[139]: 
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########## tSNE duomenu aibe ########## 

# Finding optimal eps  

 

scores_list = [] 

 

# Finding optimal eps and min_samples 

for _eps in np.arange(1.5, 3.25, 0.25): 

    for _min_sample in np.arange(2, 20, 2): 

        dbscan = DBSCAN(eps=_eps, min_samples=_min_sample) 

        labels = dbscan.fit_predict(data_tsne) 

 

        # Make sure there is more than one cluster 

        if len(set(labels)) > 1: 

            sil_score = silhouette_score(data_tsne, labels) 

             

            # Save the parameters and scores 

            scores_list.append({ 

                'eps': _eps, 

                'min_samples': _min_sample, 

                'silhouette_score': sil_score, 

            }) 

    print('round done') 

 

scores_df = pd.DataFrame(scores_list) 

 

# In[140]: 

 

scores_df 

 

# In[141]: 

 

#### PLOTTING SCORES #### 

# Plot Silhouette Score 

plt.figure(figsize=(12, 6)) 

scatter = plt.scatter(scores_df['eps'], scores_df['min_samples'], 

c=scores_df['silhouette_score'], cmap='viridis') 

colorbar = plt.colorbar(scatter) 

colorbar.set_label('Silhouette Score', fontsize=13) 

plt.xlabel('eps', fontsize = 14) 

plt.ylabel('min_samples',  fontsize = 14) 

plt.title('Silhouette Score for Different DBSCAN Parameters', fontsize = 16) 

plt.show() 

 

# In[142]: 

 

########## NORMAL DATA ########## 

# Finding optimal eps  

for _eps in np.arange(0.05, 1.0, 0.05): 

    _eps = round(_eps, 2) 

     

    dbscan = DBSCAN(eps=_eps, min_samples=5) 

    labels = dbscan.fit_predict(data) 

     

    # Calculate the Silhouette Score (ignoring noise points labeled as -1) 

    if len(set(labels)) > 1:  # Make sure there is more than one cluster 

        score = silhouette_score(data, labels) 

        print(f"DBSCAN with eps={_eps}, min_samples=5 - Silhouette Score: 

{score:.3f}") 

    else: 

        print(f"DBSCAN with eps={_eps}, min_samples=5 - 1 cluster detected.") 

 

# Finding optimal min_sample 

for _min_sample in np.arange(2, 50, 10): 

    dbscan = DBSCAN(eps=0.05, min_samples=_min_sample) 

    labels = dbscan.fit_predict(data) 
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    # Calculate the Silhouette Score (ignoring noise points labeled as -1) 

    if len(set(labels)) > 1:  # Make sure there is more than one cluster 

        score = silhouette_score(data, labels) 

        print(f"eps=0.6, min_samples={_min_sample} - Silhouette Score: {score:.3f}") 

    else: 

        print(f"eps=0.05, min_samples={_min_sample} - 1 cluster detected.") 

 

# In[143]: 

 

########## FULL DATA ########## 

for _eps in np.arange(0.1, 10.0, 0.5): 

    #_eps = round(_eps, 2) 

     

    dbscan = DBSCAN(eps=_eps, min_samples=100) 

    labels = dbscan.fit_predict(data_full) 

     

    # Calculate the Silhouette Score (ignoring noise points labeled as -1) 

    if len(set(labels)) > 1:  # Make sure there is more than one cluster 

        score = silhouette_score(data_full, labels) 

        print(f"DBSCAN with eps={_eps}, min_samples=5 - Silhouette Score: 

{score:.3f}") 

    else: 

        print(f"DBSCAN with eps={_eps}, min_samples=5 - Only one cluster detected, 

score not applicable.") 

 

### Tried calculating with different min_samples (2, 4, 10, 20, 100) and different eps 

(from 0.01 to 10.0) and clustering always fails 

 

# In[ ]: 

 

 

 

 

# #### Analysing best plots 

 

# In[144]: 

 

dbscan_labels = dbscan_plot_one(data_tsne, {'eps': 2.6, 'min_samples': 5}) 

 

# In[145]: 

 

df_tsne = pd.DataFrame(data_tsne, columns=['feature1', 'feature2']) 

df_tsne['class'] = dfminmax['class'] 

df_tsne['cluster_label'] = dbscan_labels 

df_tsne.value_counts('cluster_label') 

 

# Jeigu reiktu 

df_tsne.loc[df_tsne['cluster_label'] == 1, 'cluster_label'] = 100 

df_tsne.loc[df_tsne['cluster_label'] == 2, 'cluster_label'] = 1 

df_tsne.loc[df_tsne['cluster_label'] == 100, 'cluster_label'] = 2 

# In[146]: 

 

df_tsne_different = df_tsne[df_tsne['class'] != df_tsne['cluster_label']] 

df_tsne_different.value_counts('class') 

 

# In[147]: 

 

df_tsne_different.value_counts('cluster_label') 

 

# In[148]: 

 

df_tsne_different.value_counts('cluster_label').sum() 

 

# In[149]: 

 

dfminmax['cluster_label'] = df_tsne['cluster_label'] 
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dfminmax[dfminmax['cluster_label'] == 2].describe() 

 

# In[150]: 

 

dfminmax[dfminmax['class'] == 0].describe() 

 

# In[ ]: 

 

 

 

 

# In[151]: 

 

df_tsne.describe() 

 

# #### Plot (in)correctly assigned points 

 

# In[152]: 

 

df_tsne_different = df_tsne[df_tsne['class'] != df_tsne['cluster_label']] 

plt.figure(figsize=(10, 8)) 

 

plt.title(f"Non-coinciding points", fontsize=16) 

scatter = plt.scatter(df_tsne_different['feature1'], df_tsne_different['feature2'], 

c=df_tsne_different['cluster_label'], cmap='viridis', s=100, alpha=0.7) 

plt.xlabel('Feature 1') 

plt.ylabel('Feature 2') 

handles, labels = scatter.legend_elements() 

plt.legend(handles, labels, loc='lower right', title="Cluster Label") 

 

# In[153]: 

 

df_orig.head() 

 

# In[154]: 

 

df_tsne_different = df_tsne[df_tsne['class'] != df_tsne['cluster_label']] 

plt.figure(figsize=(10, 8)) 

 

plt.title(f"Non-coinciding points", fontsize=16) 

scatter = plt.scatter(df_tsne_different['feature1'], df_tsne_different['feature2'], 

c=df_tsne_different['class'], cmap='viridis', s=100, alpha=0.7) 

plt.xlabel('Feature 1') 

plt.ylabel('Feature 2') 

handles, labels = scatter.legend_elements() 

plt.legend(handles, labels, loc='lower right', title="class", fontsize=12) 

 

# In[155]: 

 

df_tsne_same = df_tsne[df_tsne['class'] == df_tsne['cluster_label']] 

plt.figure(figsize=(10, 8)) 

 

plt.title(f"Coinciding points", fontsize=16) 

scatter = plt.scatter(df_tsne_same['feature1'], df_tsne_same['feature2'], 

c=df_tsne_same['class'], cmap='viridis', s=100, alpha=0.7) 

plt.xlabel('Feature 1') 

plt.ylabel('Feature 2') 

handles, labels = scatter.legend_elements() 

plt.legend(handles, labels, loc='lower right', title="class", fontsize=12) 

 

# In[156]: 

 

dfminmax['cluster_label'] = df_tsne['cluster_label'] 

 

# In[157]: 
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dfminmax.head() 

 

# In[158]: 

 

dfminmax['incorrect_labels'] = dfminmax[dfminmax['class'] != 

dfminmax['cluster_label']].value_counts('cluster_label') 

 

# In[159]: 

 

plt.figure(figsize=(8, 10)) 

# Create boxplots for 'redshift' grouped by 'cluster_label' and 'class' 

plt.figure(figsize=(14, 6)) 

 

# Boxplot for 'redshift' by 'cluster_label' 

plt.subplot(1, 2, 1) 

sns.boxplot(x=dfminmax['cluster_label'], y=dfminmax['redshift']) 

plt.title("Redshift by Cluster Label") 

plt.xlabel("Cluster Label") 

plt.ylabel("Redshift") 

 

# Boxplot for 'redshift' by 'class' 

plt.subplot(1, 2, 2) 

sns.boxplot(x=dfminmax['class'], y=dfminmax['redshift']) 

plt.title("Redshift by Class") 

plt.xlabel("Class") 

plt.ylabel("Redshift") 

 

plt.tight_layout() 

plt.show() 

 

 

# In[160]: 

 

df_outliers = dfminmax[dfminmax['class'] != dfminmax['cluster_label']] 

 

# In[161]: 

 

df_outliers.loc[df_outliers['class'] == 2, 'redshift'].mean(), 

df_outliers.loc[df_outliers['cluster_label'] == 2, 'redshift'].mean() 

 

# #### Jei butu daugiau reiksmiu butu belekoks palyginimas cia gautas 

 

# In[162]: 

 

# ok cia pas mane nelabai kas yra daryti ig, bet tipo galima pastebeti, kad redshift = 

0 arba labai labai maza reiksme 

sns.boxplot(x=dfminmax['class'], y=dfminmax['redshift']) 

 

# In[163]: 

 

sns.boxplot(x=df_outliers['class'], y=df_outliers['redshift']) 

 

# In[164]: 

 

sns.boxplot(x=df_outliers['cluster_label'], y=df_outliers['redshift']) 

 

# In[165]: 

 

sns.boxplot(x=dfminmax['class'], y=dfminmax['i']) 

 

# In[166]: 

 

sns.boxplot(x=df_outliers['class'], y=df_outliers['i']) 

 

# In[ ]: 
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# In[167]: 

 

#### normal data analysing 

 

# In[168]: 

 

dbscan_params = { 

    'eps': 0.01, 

    'min_samples': 5 

} 

 

labels = dbscan_tsne_plot(data, dbscan_params) 

 

# In[169]: 

 

dbscan_params = { 

    'eps': 0.05, 

    'min_samples': 5, 

    'leaf_size': 25 

} 

 

labels2 = dbscan_tsne_plot(data, dbscan_params) 

 

# In[170]: 

 

dbscan_params = { 

    'eps': 0.05, 

    'min_samples': 5, 

    'leaf_size': 35 

} 

 

labels2 = dbscan_tsne_plot(data, dbscan_params) 

 

# In[171]: 

 

df_tsne = pd.DataFrame(data_tsne, columns=['feature1', 'feature2']) 

df_tsne['label'] = dfminmax['class'] 

df_tsne['cluster_label'] = labels 

df_tsne.value_counts('cluster_label') 

 

# In[172]: 

 

dfminmax['cluster_label'] = df_tsne['cluster_label'] 

 

# In[173]: 

 

plt.figure(figsize=(8, 10)) 

# Create boxplots for 'redshift' grouped by 'cluster_label' and 'class' 

plt.figure(figsize=(14, 6)) 

 

# Boxplot for 'redshift' by 'cluster_label' 

plt.subplot(1, 2, 1) 

sns.boxplot(x=dfminmax['cluster_label'], y=dfminmax['redshift']) 

plt.title("Redshift by Cluster Label") 

plt.xlabel("Cluster Label") 

plt.ylabel("Redshift") 

 

# Boxplot for 'redshift' by 'class' 

plt.subplot(1, 2, 2) 

sns.boxplot(x=dfminmax['class'], y=dfminmax['redshift']) 

plt.title("Redshift by Class") 

plt.xlabel("Class") 
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plt.ylabel("Redshift") 

 

plt.tight_layout() 

plt.show() 

 

 

# In[ ]: 

 

 

 

 

# In[ ]: 

 

 

 

 

# ### KMeans - getting the amounts of clusters with 'elbow', 'silhouette'. Using it on 

t-SNE data(WHICH IS BAD). 

 

# In[8]: 

 

wcss = []  # List to store WCSS values 

 

# Try different numbers of clusters 

for n_clusters in range(1, 11): 

    kmeans = KMeans(n_clusters=n_clusters, random_state=42) 

    kmeans.fit(data_tsne) 

    wcss.append(kmeans.inertia_) 

 

# Plot the WCSS values 

plt.figure(figsize=(8, 5)) 

plt.plot(range(1, 11), wcss, marker='o') 

plt.xlabel('Klasterių skaičius') 

plt.ylabel('WCSS') 

plt.title('Elbow metodas') 

plt.show() 

 

# In[9]: 

 

silhouette_scores = [] 

 

# Try different numbers of clusters 

for n_clusters in range(2, 11):  # Silhouette score is not defined for 1 cluster 

    kmeans = KMeans(n_clusters=n_clusters, init='k-means++', max_iter=300, tol=0.001, 

random_state=42) 

    labels = kmeans.fit_predict(data_tsne) 

    silhouette_scores.append(silhouette_score(data_tsne, labels)) 

 

# Plot the Silhouette Scores 

plt.figure(figsize=(8, 5)) 

plt.plot(range(2, 11), silhouette_scores, marker='o') 

# best params - 'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 0.001 

 

plt.xlabel('Klasterių skaičius') 

plt.ylabel('Silhouette reikšmė') 

plt.title('Silhouette metodas') 

plt.show() 

 

# ### kMeans 

 

# #### Defining functions 

 

# In[10]: 

 

def kmeans_plot_one(X, params): 

    # Initialize and fit KMeans with the provided parameters 
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    kmeans = KMeans(**params, random_state=42) 

    labels = kmeans.fit_predict(X) 

     

    # Plot the clusters 

    plt.figure(figsize=(10, 8)) 

    scatter = plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.7) 

     

    # Set title 

    plt.title(f"KMeans: n_clusters={params['n_clusters']}, init={params.get('init', 

'k-means++')}", fontsize=18) 

     

    # Add legend for cluster labels 

    unique_labels = np.unique(labels) 

    if len(unique_labels) < 10:  # Add legend only if there are fewer than 10 clusters 

        labels_list = [] 

        for label in unique_labels: 

            # Use the colormap for cluster labels 

            color = scatter.cmap(label / (max(unique_labels) if max(unique_labels) > 0 

else 1)) 

            labels_list.append(plt.scatter([], [], color=color, label=f'Cluster 

{label}')) 

         

        # Add legend with labels 

        plt.legend(handles=labels_list, loc='lower right', fontsize=14) 

 

    # Set axis labels and remove ticks 

    plt.xlabel('Feature 1', fontsize=18) 

    plt.ylabel('Feature 2', fontsize=18) 

    plt.xticks(fontsize=18) 

    plt.yticks(fontsize=18) 

     

    plt.tight_layout() 

    plt.show() 

 

    return labels 

 

def kmeans_visual_comparison(X, param_grid): 

    # Create subplots for all parameter combinations 

    n_params = len(param_grid) 

    n_rows = (n_params + 2) // 3  # Rows for the grid layout 

    fig, axes = plt.subplots(n_rows, 3, figsize=(18, 6 * n_rows)) 

    axes = axes.flatten() 

     

    for i, (ax, params) in enumerate(zip(axes, param_grid)): 

        # Run KMeans with the current parameters 

        kmeans = KMeans(**params, random_state=42) 

        labels = kmeans.fit_predict(X) 

         

        # Plot the clusters 

        scatter = ax.scatter( 

            X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.7 

        ) 

         

        # Add title with parameters 

        title = ( 

            # f"n_clusters={params.get('n_clusters', 3)} " 

            # f"init={params.get('init', 'k-means++')} " 

            # f"n_iter={params.get('n_iter', 300)} " 

            f"tol={params.get('tol', 1e-4)}" 

        ) 

        ax.set_title(title, fontsize=18) 

        ax.set_xticks([]) 

        ax.set_yticks([]) 

     

    # Hide unused subplots 

    for ax in axes[len(param_grid):]: 



 

46 
 

        ax.axis('off') 

     

    plt.tight_layout() 

    plt.show() 

 

def kmeans_tsne_plot(X, kmeans_params=None): 

    # Run KMeans 

    kmeans = KMeans(**kmeans_params, random_state=42) 

    labels = kmeans.fit_predict(X) 

 

    # Reduce data to 2D using t-SNE 

    tsne = manifold.TSNE(n_components=2, 

                perplexity=50, 

                n_iter=750, 

                metric='canberra', 

                random_state=42) 

    data_tsne = tsne.fit_transform(X) 

 

    # Plot the data 

    plt.figure(figsize=(12, 8)) 

 

    # Number of clusters in labels 

    n_clusters = kmeans_params['n_clusters'] 

    colors = cm.nipy_spectral(np.linspace(0, 1, n_clusters)) 

 

    # Plot each cluster 

    for k, col in zip(range(n_clusters), colors): 

        label_name = f'Cluster {k}' 

 

        class_member_mask = (labels == k) 

        xy = data_tsne[class_member_mask] 

 

        plt.scatter( 

            xy[:, 0], 

            xy[:, 1], 

            c=[col], 

            label=label_name, 

            edgecolors='k', 

            alpha=0.7, 

            s=50 

        ) 

 

    plt.title('kMeans klasterizavimas, kai dimensijos mažinamos po kMeans', 

fontsize=20) 

    plt.xlabel('t-SNE Dimensija 1', fontsize=18) 

    plt.ylabel('t-SNE Dimensija 2', fontsize=18) 

    plt.legend(loc='best', fontsize=14) 

    plt.grid(True) 

    plt.xticks(fontsize=14) 

    plt.yticks(fontsize=14) 

    plt.show() 

 

    return labels 

 

# #### KMEANS for reduced data 

 

# In[11]: 

 

# Define parameter combinations for testing 

param_grid = [ 

    # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-4}, 

    # {'n_clusters': 4, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-4}, 

    # {'n_clusters': 9, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-4}, 

    #  n_clusters - 3 best. 

 

    # {'n_clusters': 3, 'init': 'random', 'max_iter': 300, 'tol': 1e-4}, 
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    # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-4}, 

    # init method - k-means++ better. 

 

    # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 10, 'tol': 1e-4}, 

    # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-4}, 

    # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 900, 'tol': 1e-4}, 

    # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 500, 'tol': 1e-4}, 

    # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 800, 'tol': 1e-4}, 

    # max_iter - no change really. 

 

    {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-6}, 

    {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-5}, 

    {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-4}, 

    {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 0.001}, 

    {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-2}, 

    {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-1}, 

 

    # tol - 0.001 best. Can't seem to get it to be perfect though. 

    # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 10, 'tol': 0.0001}, 

    # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 0.0001}, 

    # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 0.1}, 

     

     

     

] 

 

# best params - 'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 0.001 

 

# Run the comparison 

kmeans_visual_comparison(data_tsne, param_grid) 

 

# ### KMEANS for NOT reduced data, then after the data gets reduced 

 

# In[12]: 

 

kmeans_tsne_plot(data, {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 

0.001}) 

 

# #### Evaluating clustering results. results are used visually in next steps, 

visualising with 'silhouette'. 

 

# In[13]: 

 

####### tSNE DATA ########## 

# Parameter search for KMeans 

scores_list = [] 

 

# Finding optimal n_clusters and initialization method 

for n_clusters in range(2, 20):  # Test different numbers of clusters 

    for init_method in ['k-means++', 'random']:  # Test different initialization 

methods 

        kmeans = KMeans(n_clusters=n_clusters, init=init_method, random_state=42) 

        labels = kmeans.fit_predict(data)  # Run KMeans on the raw data 

 

        # Ensure there is more than one cluster 

        if len(set(labels)) > 1: 

            sil_score = silhouette_score(data_tsne, labels)  # Compute silhouette 

score on t-SNE data 

             

            # Save the parameters and scores 

            scores_list.append({ 

                'n_clusters': n_clusters, 

                'init_method': init_method, 

                'silhouette_score': sil_score, 

            }) 

    print(f'n_clusters={n_clusters} round done') 
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# Convert results into a DataFrame 

scores_df = pd.DataFrame(scores_list) 

 

# Display the top results 

print(scores_df.sort_values(by='silhouette_score', ascending=False).head()) 

 

# In[14]: 

 

#### PLOTTING SCORES #### 

import matplotlib.pyplot as plt 

import seaborn as sns 

 

# Set up the figure 

plt.figure(figsize=(12, 6)) 

 

# Create a scatter plot of silhouette scores 

scatter = plt.scatter( 

    scores_df['n_clusters'],  

    scores_df['silhouette_score'],  

    c=scores_df['init_method'].apply(lambda x: 0 if x == 'k-means++' else 1),  

    cmap='viridis',  

    s=100,  

    alpha=0.8,  

    edgecolor='k' 

) 

 

# Add a colorbar for the initialization method 

cbar = plt.colorbar(scatter, ticks=[0, 1]) 

cbar.ax.set_yticklabels(['k-means++', 'random']) 

cbar.set_label('init reikšmė', fontsize=16) 

 

# Customize the plot 

plt.xlabel('Klasterių skaičius (n_clusters)', fontsize=14) 

plt.ylabel('Silueto rodiklis', fontsize=14) 

plt.title('KMEANS klasterizavimas. Silueto rodiklis pagal parametrus', fontsize=16) 

plt.grid(True, linestyle='--', alpha=0.6) 

 

# Adjust x-axis ticks to include all tested n_clusters 

plt.xticks(range(scores_df['n_clusters'].min(), scores_df['n_clusters'].max() + 1)) 

 

# Show the plot 

plt.tight_layout() 

plt.show() 

 

# #### 'Elbow' testing on original data(THE GOOD WAY). 

 

# In[15]: 

 

wcss_list = [] 

 

# Range of cluster numbers to test 

n_clusters_range = range(1, 20)  # Adjust as needed 

 

# Initialization methods to test 

init_methods = ['k-means++', 'random'] 

 

# Perform KMeans clustering and compute WCSS for each combination 

for n_clusters in n_clusters_range: 

    for init_method in init_methods: 

        kmeans = KMeans(n_clusters=n_clusters, init=init_method, random_state=42) 

        kmeans.fit(data)  # Use original data for clustering 

 

        # Retrieve WCSS (inertia_) 

        wcss = kmeans.inertia_ 
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        # Save the parameters and WCSS 

        wcss_list.append({ 

            'n_clusters': n_clusters, 

            'init_method': init_method, 

            'wcss': wcss, 

        }) 

    print(f'n_clusters={n_clusters} round done') 

 

# Convert results into a DataFrame 

wcss_df = pd.DataFrame(wcss_list) 

 

# Display the results 

print(wcss_df.head()) 

 

# Optional: Plot WCSS values to visualize the elbow 

plt.figure(figsize=(10, 6)) 

 

for init_method in init_methods: 

    subset = wcss_df[wcss_df['init_method'] == init_method] 

    plt.plot(subset['n_clusters'], subset['wcss'], marker='o', label=f"Init: 

{init_method}") 

 

plt.xlabel('Number of Clusters (n_clusters)') 

plt.ylabel('Within-Cluster Sum of Squares (WCSS)') 

plt.title('Elbow Method for Optimal Number of Clusters') 

plt.legend() 

plt.grid(True, linestyle='--', alpha=0.6) 

plt.tight_layout() 

plt.figure(figsize=(10, 6)) 

 

for init_method in init_methods: 

    subset = wcss_df[wcss_df['init_method'] == init_method] 

    plt.plot(subset['n_clusters'], subset['wcss'], marker='o', label=f"Init: 

{init_method}") 

 

plt.xlabel('Number of Clusters (n_clusters)') 

plt.ylabel('Within-Cluster Sum of Squares (WCSS)') 

plt.title('Elbow Method for Optimal Number of Clusters') 

plt.legend() 

plt.grid(True, linestyle='--', alpha=0.6) 

 

# Add this line to set x-axis ticks to integer cluster numbers 

plt.xticks(n_clusters_range) 

 

plt.tight_layout() 

plt.show() 

 

# #### Analysing best plots 

 

# In[16]: 

 

dbscan_labels = kmeans_plot_one(data_tsne, {'n_clusters': 3, 'init': 'k-means++', 

'max_iter': 300, 'tol': 0.001}) 

 

# In[18]: 

 

df_tsne = pd.DataFrame(data_tsne, columns=['feature1', 'feature2']) 

df_tsne['label'] = dfminmax['class'] 

df_tsne['cluster_label'] = dbscan_labels 

 

# In[19]: 

 

df_tsne.describe() 

 

# In[20]: 
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df_tsne_different = df_tsne[df_tsne['label'] != df_tsne['cluster_label']] 

df_tsne_different.value_counts('label') 

 

# In[21]: 

 

# Apkeiciam cluster_label vietomis, kad atitiktu klases 

df_tsne.loc[df_tsne['cluster_label'] == 1, 'cluster_label'] = 100 

df_tsne.loc[df_tsne['cluster_label'] == 2, 'cluster_label'] = 1 

df_tsne.loc[df_tsne['cluster_label'] == 100, 'cluster_label'] = 2 

 

# In[22]: 

 

df_tsne_different = df_tsne[df_tsne['label'] != df_tsne['cluster_label']] 

df_tsne_different.value_counts('label') 

 

# In[23]: 

 

df_tsne_different.value_counts('cluster_label') 

 

# In[22]: 

 

# Find the best mapping from cluster_label to label 

from scipy.optimize import linear_sum_assignment 

from sklearn.metrics import confusion_matrix 

 

# Create a confusion matrix between true labels and cluster labels 

conf_matrix = confusion_matrix(df_tsne['label'], df_tsne['cluster_label']) 

 

# Use Hungarian algorithm to find the optimal label-to-cluster mapping 

row_ind, col_ind = linear_sum_assignment(-conf_matrix) 

 

# Create a mapping dictionary 

mapping = {cluster: label for cluster, label in zip(col_ind, row_ind)} 

 

# Map cluster labels to match the true labels 

df_tsne['cluster_label'] = df_tsne['cluster_label'].map(mapping) 

 

# Recalculate mismatched rows after remapping 

df_tsne_different = df_tsne[df_tsne['label'] != df_tsne['cluster_label']] 

 

# Display updated mismatch counts 

print("Neatitinakčių klasių objektų skaičius:") 

print(df_tsne_different.value_counts('label')) 

 

# #### Plot incorrectly assigned points 

 

# In[23]: 

 

import matplotlib.pyplot as plt 

import numpy as np 

 

def visualize_tsne_results(df_tsne): 

    mismatches = df_tsne['label'] != df_tsne['cluster_label'] 

    num_mismatches = mismatches.sum() 

    total_samples = len(df_tsne) 

    percentage_mismatched = (num_mismatches / total_samples) * 100 

 

    # Scatter plot for true labels 

    plt.figure(figsize=(18, 6)) 

     

    plt.subplot(1, 3, 1) 

    scatter = plt.scatter(df_tsne['feature1'], df_tsne['feature2'], 

c=df_tsne['label'], cmap='viridis', s=70, alpha=0.8) 

    cbar = plt.colorbar(scatter, ticks=np.unique(df_tsne['label']))  # Set colorbar 

ticks to unique label values 

    cbar.set_label('Tikslios klasės', fontsize=16) 
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    cbar.ax.tick_params(labelsize=14) 

    plt.title('t-SNE klasteriai', fontsize=18) 

    plt.xlabel('Dimensija 1', fontsize=16) 

    plt.ylabel('Dimensija 2', fontsize=16) 

    plt.xticks(fontsize=14) 

    plt.yticks(fontsize=14) 

     

    # Scatter plot for cluster labels 

    plt.subplot(1, 3, 2) 

    scatter = plt.scatter(df_tsne['feature1'], df_tsne['feature2'], 

c=df_tsne['cluster_label'], cmap='viridis', s=70, alpha=0.8) 

    cbar = plt.colorbar(scatter, ticks=np.unique(df_tsne['cluster_label']))  # Set 

colorbar ticks to unique cluster labels 

    cbar.set_label('Klasteriai', fontsize=16) 

    cbar.ax.tick_params(labelsize=14) 

    plt.title('kMeans klasės', fontsize=18) 

    plt.xlabel('Dimensija 1', fontsize=16) 

    plt.ylabel('Dimensija 2', fontsize=16) 

    plt.xticks(fontsize=14) 

    plt.yticks(fontsize=14) 

     

    # Scatter plot for mismatches 

    plt.subplot(1, 3, 3) 

    plt.scatter( 

        df_tsne.loc[~mismatches, 'feature1'],  

        df_tsne.loc[~mismatches, 'feature2'],  

        c='gray',  

        s=70,  

        alpha=0.5,  

        label='Atitinka' 

    ) 

    plt.scatter( 

        df_tsne.loc[mismatches, 'feature1'],  

        df_tsne.loc[mismatches, 'feature2'],  

        c='red',  

        s=70,  

        alpha=0.8,  

        label='Neatitinka' 

    ) 

    plt.legend(fontsize=14) 

    plt.title(f't-SNE atitikimas pagal klases\n{percentage_mismatched:.2f}% 

neatitinka', fontsize=18) 

    plt.xlabel('Dimensija 1', fontsize=16) 

    plt.ylabel('Dimensija 2', fontsize=16) 

    plt.xticks(fontsize=14) 

    plt.yticks(fontsize=14) 

     

    plt.tight_layout() 

    plt.show() 

     

    # Print the percentage of mismatches 

    print(f"Percentage of mismatched objects: {percentage_mismatched:.2f}%") 

 

# In[24]: 

 

visualize_tsne_results(df_tsne) 

 

# In[37]: 

 

df_tsne.describe() 

 

# In[25]: 

 

dfminmax['cluster_label'] = df_tsne['cluster_label'] 

 

# In[26]: 
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dfminmax['incorrect_labels'] = dfminmax[dfminmax['class'] != 

dfminmax['cluster_label']].value_counts('cluster_label') 

 

# In[27]: 

 

plt.figure(figsize=(8, 10)) 

# Create boxplots for 'redshift' grouped by 'cluster_label' and 'class' 

plt.figure(figsize=(14, 6)) 

 

# Boxplot for 'redshift' by 'cluster_label' 

plt.subplot(1, 2, 1) 

sns.boxplot(x=dfminmax['cluster_label'], y=dfminmax['redshift']) 

plt.title("Redshift by Cluster Label") 

plt.xlabel("Cluster Label") 

plt.ylabel("Redshift") 

 

# Boxplot for 'redshift' by 'class' 

plt.subplot(1, 2, 2) 

sns.boxplot(x=dfminmax['class'], y=dfminmax['redshift']) 

plt.title("Redshift by Class") 

plt.xlabel("Class") 

plt.ylabel("Redshift") 

 

plt.tight_layout() 

plt.show() 

 

 

# In[28]: 

 

df_outliers = dfminmax[dfminmax['class'] != dfminmax['cluster_label']] 

# df_outliers - neatitinakcios klasterizavimo rezultato klases 

df_outliers.describe() 

 

# In[29]: 

 

num_class_0_outliers = df_outliers[df_outliers['class'] == 0].shape[0] 

print(f"Neatitinkančių objektų kiekis 0 klasei: {num_class_0_outliers}") 

num_class_1_outliers = df_outliers[df_outliers['class'] == 1].shape[0] 

print(f"Neatitinkančių objektų kiekis 1 klasei: {num_class_1_outliers}") 

num_class_2_outliers = df_outliers[df_outliers['class'] == 2].shape[0] 

print(f"Neatitinkančių objektų kiekis 2 klasei: {num_class_2_outliers}") 

 

# In[30]: 

 

df_outliers.loc[df_outliers['class'] == 2, 'redshift'].mean(), 

df_outliers.loc[df_outliers['cluster_label'] == 2, 'redshift'].mean() 

 

# nu ir ok, cia tavo padaryta, nu ir gerai, man sito nereikia, nes tik 1 objektas 2 

kategorijos blogai kateogiruoztas, nu tai lol? 

 

# In[31]: 

 

for col in normalization_cols: 

    plt.figure(figsize=(14, 6)) 

     

    # First subplot: Boxplot of the variable by 'class' in dfminmax 

    plt.subplot(1, 2, 1) 

    sns.boxplot(x='class', y=col, data=dfminmax) 

    plt.title(f'{col.capitalize()} reikšmė, t-SNE algoritmas.', fontsize=16) 

    plt.xlabel('Klasė', fontsize=14) 

    plt.ylabel(col.capitalize(), fontsize=14) 

    plt.xticks(fontsize=12) 

    plt.yticks(fontsize=12) 

     

    # Second subplot: Boxplot of the variable by 'class' in df_outliers 
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    plt.subplot(1, 2, 2) 

    sns.boxplot(x='class', y=col, data=df_outliers) 

    plt.title(f'{col.capitalize()} reikšmė, kMeans persidengiančių objektų 

neatitikimas.', fontsize=16) 

    plt.xlabel('klasė', fontsize=14) 

    plt.ylabel(col.capitalize(), fontsize=14) 

    plt.xticks(fontsize=12) 

    plt.yticks(fontsize=12) 

     

    # Adjust layout and display the plots 

    plt.tight_layout() 

    plt.show() 

 

# #### Comparison of df_outliers(mismatching KMeans labels and classes) and dfminmax 

 

# In[32]: 

 

for col in normalization_cols: 

    plt.figure(figsize=(14, 6)) 

     

    # First subplot: Boxplot of the variable by 'class' in dfminmax 

    plt.subplot(1, 2, 1) 

    sns.boxplot(x='class', y=col, data=dfminmax) 

    plt.title(f'{col.capitalize()} reikšmė, t-SNE algoritmas.', fontsize=16) 

    plt.xlabel('Klasė', fontsize=14) 

    plt.ylabel(col.capitalize(), fontsize=14) 

    plt.xticks(fontsize=12) 

    plt.yticks(fontsize=12) 

     

    # Second subplot: Boxplot of the variable by 'class' in df_outliers 

    plt.subplot(1, 2, 2) 

    sns.boxplot(x='class', y=col, data=df_outliers) 

    plt.title(f'{col.capitalize()} reikšmė, kMeans persidengiančių objektų 

neatitikimas.', fontsize=16) 

    plt.xlabel('klasė', fontsize=14) 

    plt.ylabel(col.capitalize(), fontsize=14) 

    plt.xticks(fontsize=12) 

    plt.yticks(fontsize=12) 

     

    # Adjust layout and display the plots 

    plt.tight_layout() 

    plt.show() 

 

# In[33]: 

 

df_tsne = pd.DataFrame(data_tsne, columns=['feature1', 'feature2']) 

df_tsne['label'] = dfminmax['class'] 

df_tsne['cluster_label'] = labels 

df_tsne.value_counts('cluster_label') 

 

# In[34]: 

 

dfminmax['cluster_label'] = df_tsne['cluster_label'] 

 

 


