

VILNIAUS UNIVERSITETAS

MATEMATIKOS IR INFORMATIKOS FAKULTETAS

INFORMACINIŲ SISTEMŲ INŽINERIJOS STUDIJŲ PROGRAMA

Savarankiško darbo ataskaita.

Atliko: Justinas Rimavičius, Edvardas

Ražanskas

VU el. p.: edvardas.razanskas@mif.stud.vu.lt,

justinas.rimavicius@mif.stud.vu.lt

Vertino: dr. Jolita Bernatavičienė

Vilnius

2024

 Duomenų tyryba. Klasterizavimo algoritmų analizė.

mailto:edvardas.razanskas@mif.stud.vu.lt
mailto:justinas.rimavicius@mif.stud.vu.lt

2

TURINYS

Turinys ..2

1. Įvadas ..3

1.1. Darbo tikslas ir uždaviniai ...3

1.2. Darbo įrankiai ...3

2. Duomenų analizė ..4

2.1. Tiriamos duomenų aibės ir jos požymių aprašymas ..4

2.2. Požymių ir objektų apdorojimas ..5

2.3. Objektų atrinkimas ...6

2.4. Duomenų aibės normavimas ...6

2.5. Sumažintos dimensijos duomenys ...6

3. Klasterizavimas ...8

3.1. „kMeans“ algoritmas/metodas ..8

3.1.1. Aprašymas ..8

3.1.2. „n_clusters“ reikšmės nustatymas ...9

3.1.3. Algoritmo taikymas sumažintos dimensijos duomenims .. 11

3.1.4. Algoritmo taikymas prieš mažinant dimensijas... 13

3.1.5. Silueto rodiklis ... 14

3.1.6. Klasterizavimo tikslumas ... 15

3.1.7. Išvados ... 16

3.2. „DBSCAN“ algoritmas/metodas .. 17

3.2.1. Aprašymas ... 17

3.2.2. Algoritmo taikymas sumažintos dimensijos duomenims .. 18

3.2.3. Algoritmo taikymas normuotoms duomenų aibėms .. 21

3.2.4. Klasterizavimo tikslumas ... 24

3.2.5. Algoritmo jautrumas mažiems duomenų aibės pokyčiams .. 27

3.2.6. Išvados ... 29

4. Išvados ... 30

Šaltiniai .. 31

Kodas ... 32

3

1. ĮVADAS

1.1. Darbo tikslas ir uždaviniai
Šio darbo tikslas – SDSS (Sloan‘o skaitmeninio dangaus tyrimo DR17) duomenų imčiai su

pilnu ir atrinktų požymių rinkiniu, bei tos paties duomenų imties sumažintos dimensijos duomenų

rinkiniui pritaikyti „kMeans“ ir „DBSCAN“ klasterizavimo algoritmus, palyginti jų rezultatus,

apibrėžti susidariusių klasterių specifiką.

Darbo uždaviniai:

1. Trumpai aprašyti tiriamą duomenų aibę, jos požymius, pagrindines savybes.

2. Pasirinkti ir pagrįsti pagal kokius požymius bus atliekamas klasterizavimas.

3. Naudojant „Elbow“ ir „Silhouette“ metodus įvertinti optimalų klasterių skaičių.

4. Suklasterizuoti duomenis naudojant „kMeans“ ir „DBSCAN“ klasterizavimo

algoritmus.

5. Patikrinti, kokią įtaką daro klasterizavimui išskirtys bei duomenų dimensijos

mažinimas. Kaip keičiasi tendencijos klasteriuose?

6. Apibendrinti rezultatus, pastebėtas tendencijas klasteriams, pateikti jų interpretaciją.

1.2. Darbo įrankiai
Duomenų apdorojimas, transformacija, analizė, dimensijų mažinimo metodai ir

klasterizavimo metodai buvo pritaikyti naudojant „Python 3.12.0” programavimo kalbą ir jos

bibliotekas (daugiau žiūrėti skyrių Kodas).

4

2. DUOMENŲ ANALIZĖ

2.1. Tiriamos duomenų aibės ir jos požymių aprašymas
Pateiktoje žvaigždžių klasifikacijos duomenų aibėje („Stellar Classification Dataset“) yra 100000

eilučių, 18 požymių stulpelių. Jutiklių matavimai yra „float“ tipo (t.y. priklauso realiųjų skaičių

aibei) , „class“ požymis yra „object“ tipo (t.y. simboliai), likę požymiai yra „int“ tipo (t.y.

priklauso sveikųjų skaičių aibei).

2.1 pav. pradinė duomenų aibė

Duomenų aibės požymių aprašymai:

• obj_ID = objekto identifikatorius, unikali dangaus kūno vertė, identifikuojanti objektą

CAS naudojamame vaizdų kataloge.

• alpha = dešiniojo pakilimo kampas (pagal J2000 epochą)

• delta = deklinacijos kampas (pagal J2000 epochą)

• u = ultravioletinis astrofotometrinės sistemos filtras

• g = žaliasis astrofotometrinės sistemos filtras

• r = raudonasis astrofotometrinės sistemos filtras

• i = artimųjų infraraudonųjų spindulių filtras astrofotometrinė sistemoje

5

• z = infraraudonųjų spindulių filtras astrofotometrinė sistemoje

• run_ID = serijos numeris, naudojamas konkrečiam nuskaitymui identifikuoti

• rereun_ID = pakartotinio paleidimo numeris, nurodantis, kaip vaizdas buvo apdorotas

• cam_col = kameros stulpelis, skirtas skenavimo linijai nustatyti

• field_ID = lauko numeris kiekvienam laukui identifikuoti

• spec_obj_ID = unikalus optinių spektroskopinių objektų ID (tai reiškia, kad 2 skirtingi

stebėjimai su tuo pačiu spec_obj_ID turi turėti bendrą išvesties klasę)

• class = objekto klasė (galaktika, žvaigždė arba kvazaras)

• redshift (raudonasis poslinkis) = raudonojo poslinkio vertė, pagrįsta bangos ilgio

padidėjimu

• plate = plokštės ID, identifikuojantis kiekvieną SDSS plokštę

• MJD = modifikuota Julijaus data, naudojama nurodyti, kada buvo paimta tam tikra

SDSS duomenų dalis

• fiber_ID = pluošto ID, identifikuojantis pluoštą, kuris nukreipė šviesą į židinio

plokštumą kiekvieno stebėjimo metu

2.2. Požymių ir objektų apdorojimas
Pašalinti šie požymiai, nedarantys įtakos kosminio kūno klasifikavimui:

• „obj_ID“ požymis, nes tai identifikacinis numeris nedarantis įtakos duomenims;

• „alpha“ ir „delta“ požymiai nusako kosminio objekto poziciją, o jos nėra susijusios su

skirtingų objektų (galaktikų, žvaigždžių, kvazarų) fizinėmis savybėmis;

• „spec_obj_ID“ požymis, nes 2 skirtingi stebėjimai su tuo pačiu spec_obj_ID turi turėti

bendrą išvesties klasę, o visos šio požymio reikšmės yra skirtingos;

• „rerun_ID“ požymis, nes yra tik viena unikali reikšmė;

• „MJD“ požymis, nes ji simbolizuoja datą, kada užfiksuotas stebėjimas

Duomenų aibė neturėjo praleistų reikšmių. Tolimesniems uždaviniams pasirinkome „redshift“,

„u“, „g“, „r“, „i“ ir „z“ požymius.

Duomenų aibė turėjo vieną eilutę, kurioje „u“, „g“ ir „z“ reikšmės buvo -9999, tad šią triukšmo

eilutę panaikinome.

„Class“ požymis yra kategorinis požymis, kuris turi tris unikalias reikšmes duomenų aibėje:

GALAXY – galaktika, QSO – kvazaras(ypač šviesus objektas galaktikos centre), STAR –

žvaigždė. Kiekviena šių reikšmių buvo pakeista atitinkamai į skaičius 0, 1, 2.

6

2.3. Objektų atrinkimas
Tolimesniam duomenų analizavimui, apdorojimui ir vizualizavimui buvo atsitiktinai atrinkti po

1000 objektų iš kiekvienos klasės (2.2 pav.):

2.2 pav. duomenų aibė su pasirinktais objektais

2.4. Duomenų aibės normavimas
Duomenų normavimui buvo parinkti šie požymiai: „redshift“, „u“, „g“, „r“, „i“ ir „z“. Kiti

požymiai buvo nenormuoti, nes jie yra arba identifikaciniai („run_ID“, „field_ID“, „cam_col“,

„plate“, ir „fiber_ID“) arba kategoriniai („class“). Duomenys buvo normuoti naudojant „min-

max“ metodą (2.3 pav.)

2.3 pav. min-max metodu normuotos duomenų aibės statistika

2.5. Sumažintos dimensijos duomenys

Žemiau esančiame grafike (2.4 pav.) matome „t-SNE“ grafiką, pritaikytą atrinktiems požymiams.

„tSNE“ metodo parametrų reikšmės: "max_iter" reikšmė lygi 750, o "perplexity" lygus 50,

"metric" lygi "canberra", „random_state“ reikšmė lygi 42. Metodas „t-SNE“ buvo taikytas

atsitiktinai 3000 paimtiems objektų, kai parametras „random_state“ lygus 2. Šiuo metodu

sumažinta iki 2 dimensijų duomenų aibė yra naudojama tolimesniuose žingsniuose – pagrinde

„kMeans“ ir „DBSCAN“ klasterizavimo metodų vaizdavimui.

7

2.4 pav. "t-SNE" metodu sumažintos dimensijos duomenys, kai pradinis atsitiktinis duomenų rinkinys

sudarytas naudojant „random_state“ lygu 2.

„DBSCAN“ klasterizavimui buvo naudojamas toks pat „t-SNE“ metodas, su tokiais pat

parametrais, tačiau atsitiktiniai 3000 tiriamų objektų buvo paimti naudojant „random_state“ 42 (2.5

pav.) Matoma, kad objektai pasiskirstę panašiai, tačiau, kaip bus matoma vėliau (skyrius 0

8

Algoritmo jautrumas mažiems duomenų aibės pokyčiams), tai gali daryti didelę įtaką

klasterizavimui.

2.5 pav. "t-SNE" metodu sumažintos dimensijos duomenys, kai pradinis atsitiktinis duomenų rinkinys

sudarytas naudojant „random_state“ lygu 42.

3. KLASTERIZAVIMAS

3.1. „kMeans“ algoritmas/metodas

3.1.1. Aprašymas

kMeans (angl. „K-Means Clustering“) yra centroidų pagrindu veikiantis klasterizavimo

algoritmas, kuris naudojamas grupėms (klasteriams) duomenyse identifikuoti pagal jų tarpusavio

atstumus. Šis algoritmas priskiria taškus tam klasteriui, kurio centroidas yra arčiausiai, iteratyviai

atnaujindamas centrų pozicijas, kol rezultatai stabilizuojasi. kMeans dažniausiai naudojamas tais

atvejais, kai reikia aiškiai apibrėžtų klasterių, kurių skaičius (angl. „n_clusters“) nustatomas iš

anksto. Dėl šios priežasties kMeans yra efektyvus, tačiau jo rezultatai labai priklauso nuo pradinio

klasterių skaičiaus nustatymo.

kMeans algoritme svarbiausi parametrai yra:

• n_clusters: klasterių skaičius, kurį reikia iš anksto nustatyti pagal duomenų

struktūrą arba optimizavimo metodus, tokius kaip Elbow ar Silhouette.

• init: pradinis centroidų nustatymo metodas, pvz., „k-means++“, kuris pagerina

algoritmo efektyvumą, sumažindamas pradinių pozicijų jautrumą.

• max_iter: maksimalus iteracijų skaičius, per kurį centroidai optimizuojami.

• tol: tolerancijos riba, nustatanti, kiek centroidų pokytis tarp iteracijų gali būti

ignoruojamas.

Šiuo atveju K-Means algoritmas buvo taikytas šioms normuotoms „min-max“ metodu

duomenų aibėms:

9

• Pilnai duomenų aibei, ištrynus klasės požymį;

• Duomenų aibei su atrinktais požymiais („u“, „g“, „r“, „i“, „z“, „redshift“);

• Duomenų aibei su tais pačiais atrinktais požymiais, pritaikius „t-SNE“ metodą

(dimensiškumo mažinimo metodą).

Taip pat buvo pastebėta, kad „n_clusters“ reikšmė turi būti nustatoma itin atidžiai, nes

netinkamas klasterių skaičius gali lemti prastą grupių atskyrimą. Optimalus klasterių skaičius

buvo identifikuotas naudojant Elbow ir Silhouette metodus.

10

3.1.2. „n_clusters“ reikšmės nustatymas

Norint, kad „kMeans” metodas duotų reikšmingus rezultatus, svarbiausias parametras yra

„n_clusters“. Šio parametro nustatymui naudojome 2 metodus – „Elbow“ ir „Silhouette“

Elbow metodo esmė – apskaičiuoti klaidų sumą (SSE, angl. „Sum of Squared Errors”)

kiekvienam klasterių skaičiui ir ją atvaizduoti grafike. SSE yra rodiklis, kuris parodo, kiek

duomenų taškai nutolę nuo savo klasterio centro.

Kai klasterių skaičius didėja, SSE reikšmė mažėja, nes taškai yra arčiau savo klasterių centrų.

„Elbow” metodo grafike dažnai pastebimas alkūnės taškas – vieta, kurioje SSE reikšmės

mažėjimas sulėtėja. Šis taškas dažniausiai žymi optimalų klasterių skaičių, nes nuo šio momento

didesnis klasterių skaičius neduoda reikšmingo pagerėjimo.

Silueto metodas yra naudojamas įvertinti klasterizavimo kokybę ir nustatyti optimalų klasterių

skaičių. Šis metodas remiasi silueto koeficientu, kuris parodo, kaip gerai kiekvienas taškas

priskirtas savo klasteriui, palyginti su kitais klasteriais.

3.1 pav. "Silhouette" reikšmių ir klasterių skaičiaus priklausomybės linijinė diagrama.

11

3.2 pav. "Elbow" reikšmių ir klasterių skaičiaus priklausomybės linijinė diagrama.

„Elbow“ metode (3.2 pav.) matoma alkūnė, kai klasterių skaičius yra 3, t.y. esant daugiau nei 3

klasteriams, klasterizavimas nesuteikia daug aiškesnio rezultato.

„Silhouette“ metode (3.1 pav.) matoma, jog esant 3 klasteriams, „Silhouette“ skaičius yra 0.42, o

esant 5 jis yra 0.51, t.y. didžiausias. Tai nėra optimaliausio klasterių skaičiaus suradimas, nes šie

metodai buvo pritaikyti t-SNE dimensijų mažintiems duomenims, o šis metodas neišlaiko globalių

atstumų tarp objektų, kas yra svarbu šiam metodui. Sekančiame punkte bus aiškiau matoma, kaip

„Silhouette“ metodo skaičius pasikeičia ir yra rodoma, jog optimalus klasterių skaičius yra 3, kai

jo analizė yra atliekama nemažintiems dimensijų duomenims (3.8 pav. - 3.1.5 skiltis).

12

3.1.3. Algoritmo taikymas sumažintos dimensijos duomenims

Sekančiuose grafikuose atvaizduojami „kMeans“ algoritmai t-SNE metodu sumažintos

dimensijos duomenims.

Pirmasis grafikas(xx pav.) vaizduoja „n_clusters“ parametro pokytį. Matoma, jog efektyviausias

rezultatas esant 3 klasteriams – sekančiuose grafikuose šis skaičius ir bus naudojamas.

3.3 pav. "kMeans" klasterizavimas keičiantis "n_clusters" parametro reikšmėms.

Sekantis grafikas – „init“ parametro keitimas (3.4 pav.). Pasirinkus „k-means++“ reikšmę

klasterių centrai yra optimalesnėse vietose, nei naudojant „random“.

3.4 pav. "kMeans" klasterizavimas keičiant "init" parametro reikšmes.

Sekantys 2 grafikai(3.5 pav. ir 3.6 pav.) vaizduoja „max_iter“ ir „tol“ reikšmių pokyčius, tačiau

šie parametrai „kMeans“ rezultato nepakeičia.

13

3.5 pav. "kMeans" klasterizavimas keičiant "tol" parametro reikšmes.

3.6 pav. "kMeans" klasterizavimas keičiant "max_iter" parametro reikšmes.

Tolimesnei analizei buvo pasirinkti šie parametrai: „n_clusters“ lygus 3, „init“ lygus „k-

means++“, „tol“ lygus „0.0001“ ir „max_iter“ lygus 300.

14

3.1.4. Algoritmo taikymas prieš mažinant dimensijas.

Naudojant tuos pačius optimalius parametrus(„n_clusters“ = 3; „init“ = „k-means++“) sekančiame

grafike(3.7 pav.) yra matomas grafikas, kuris buvo gautas pirma atliekant „kMeans“

klasterizavimą, ir tik tada t-SNE dimensijos mažinimą rezultatų atvaizdavimui 2D ašyse. Matoma,

kad klasterių pozicijos skiriasi nuo klasterizavimo, pirma darant t-SNE.

Akivaizdu, jog dimensijų mažinimas prieš klasterizavimą ar po jo turi didelę įtaką rezultatams –

šiai duomenų aibei su specifiškais parametrais pirma atliekant dimensijų mažinimą, gaunamų

klasterių centrų pozicijos yra tikslesnės.

3.7 pav. "kMeans" klasterizavimas prieš taikant "t-SNE" metodą.

15

3.1.5. Silueto rodiklis

3.8 pav. Siluetų metodo rodiklis keičiantis klasterių skaičiui.

Aukščiau esančiame grafike(3.8 pav.) yra matomi „Silhouette“ algoritmo rezultatai, kai šiam

algoritmui yra naudojami originalūs, nesumažintų dimensijų duomenys. Kai „n_clusters“ reikšmė

lygi 3, Silueto rodiklio reikšmė yra didžiausia. Šis klasterių kiekis sutampa su „elbow“ metodu

gautu klasterių kiekiu ir su vizualiai matomu klasterių kiekiu, tad galima daryti išvadą, jog šiai

duomenų aibei optimalus klasterių kiekis yra 3.

Šie rezultatai, lyginant su pradžioje gautu “Silhouette” grafiku(pav. 3.1.2 skyriuj ten), yra tikslūs.

Kai naudojamas silueto algoritmas nemažinant dimensijų(3.8 pav.), atstumai tarp objektų pozicijų

išlieka originalūs, o tai yra svarbu šiam algoritmui.

16

3.1.6. Klasterizavimo tikslumas

3.9 pav. “t-SNE” dimensijų mažinimo ir “kMeans” klasterizavimo grafikai, jų persidengimo grafikas.

3.9 pav. pateikiami grafikai, kuriuose matoma „t-SNE“ dimensijų mažinimo, „kMeans“

klasterizavimo ir jų persidengimo grafikai:

Pirmas grafikas kairėje su klasėmis, gautomis iš „t-SNE“ dimensijų mažinimo algoritmo,

antras grafikas viduryje vaizduoja „kMeans” klasterizavimo rezultatą ir trečias grafikas dešinėje

– šių grafikų persidengimą(atitikimas – pilka spalva pažymėti objektai, neatitikimas – raudona).

Matoma, jog 8.13% objektų, klasterizuotų su „kMeans“, neatitiko su klasėmis, lyginant su „t-

SNE“ rezultatais.

Galima pastebėti, kurie objektai po „kMeans“ klasterizavimo neatitinka, lyginant su klasėmis iš

„t-SNE“(3.16 pav.). 0 klasės objektų yra 146, 1 klasės – 97, ir 2 klasės tik 1. Tai reiškia, jog

„kMeans“ klasterizavimas pasirinktais parametrais 2 klasę klasterizavo beveik tobulai, tačiau 0 ir

1 klasėse buvo neatitikimų.

Pav. 3.16. Klasių pasiskirstymas klasterizavimo rezultatuose, kai klasterių objektai neatitinka

klasių.

17

3.1.7. Išvados

Atlikus klasterizavimo analizę naudojant „kMeans“ algoritmą, nustatyta, kad optimalus

klasterių skaičius mūsų pasirinktai duomenų aibei yra 3. Tokią pačią išvadą galima daryti ir

panaudojus „Elbow“ metodą sumažintos dimensijos duomenų rinkiniui ir „Silhouette“ metodą

nesumažintos dimensijos duomenų rinkiniui, abiejų rezultatai sutampa – optimalus klasterių

skaičius yra 3. Geriausi rezultatai pasiekiami su parametrais, kai „n_clusters“ lygus 3 ir „init“

lygus „k-means++“. Likę parametrai didelės įtakos rezultatams nedarė.

Taip pat buvo pastebėta, jog naudojant „t-SNE“ algoritmu sumažintos dimensijos rezultatus

klasteriai buvo aiškiai atskirti, tačiau klasterių pozicijos skiriasi priklausomai nuo to, ar „t-SNE“

buvo atliktas prieš klasterizavimą, ar po jo. Klasterizavimas parodė, jog „kMeans“ efektyviai

identifikuoja pagrindines duomenų grupes, tačiau neatitikimai (apie 8.13%) su tikrosiomis

klasėmis rodo, kad kai kurie taškai yra sunkiai klasifikuojami dėl jų panašumo į skirtingus

klasterius(dėl klasių persidengimo). Optimalūs rezultatai buvo gauti pašalinus išskirtis ir tinkamai

normalizavus duomenis, o tai sustiprino klasterių atsiskyrimą ir pagerino modelio tikslumą.

Taip pat buvo pastebėtas klasterių nestabilumas. Naudojant kitokią „seed“ reikšmę

duomenų normavimo žingsnyje, atsitiktinių objektų pasirinkimo žingsnyje ar dimensijos

mažinimo žingsnyje algoritmas gali klasterizuoti duomenis kitaip, tokiu atveju neatitikimo su „t-

SNE“ klasėmis procentas būtų daug didesnis nei 8.13%.

18

3.2. „DBSCAN“ algoritmas/metodas

3.2.1. Aprašymas

DBSCAN (angl. „Density-Based Spatial Clustering of Applications with Noise“) yra tankiu

pagrįstas klasterizavimo algoritmas, kuris naudojamas identifikuoti grupes (klasterius)

duomenyse pagal jų tankį. Algoritmas yra efektyvus aptinkant įvairių formų ir dydžių klasterius,

kuriuose gali neiškarto matytis atskiros taškų grupės. Taip pat, jis automatiškai nustato triukšmo

taškus (angl. „outliers“). „DBSCAN“ neskiria fiksuoto skaičiaus klasterių, kaip tai daro kai kurie

kiti algoritmai (pvz., K-means). Vietoj to, klasterių skaičius priklauso nuo duomenų struktūros ir

jų tankumo.

„DBSCAN“ svarbiausi du parametrai yra:

• eps (epsilon): atstumas, kuris nustato, kaip arti taškai turi būti vienas kito, kad jie būtų

laikomi to paties klasterio dalimi.

• min_samples: minimalus taškų skaičius, reikalingas klasteriui suformuoti.

Šiuo atveju „DBSCAN“ algoritmas buvo taikytas šioms normuotoms „min-max“ metodu

duomenų aibėm:

• pilnai duomenų aibei, ištrynus klasės požymį;

• duomenų aibei su atrinktais požymiais („u“, „g“, „r“, „i“, „z“, „redshift“);

• duomenų aibei su tai pačiais atrinktais požymiais, pritaikius „t-SNE“ metodą

(dimensiškumo mažinimo metodą).

19

3.2.2. Algoritmo taikymas sumažintos dimensijos duomenims

 „DBSCAN“ klasterizavimo algoritmas su skirtingais parametrais taikytas normuotai duomenų

aibei su atrinktais požymiais („u“, „g“, „r“, „i“, „z“, „redshift“) ir „t-SNE“ metodo pagalba

sumažintos dimensijos iki 2 duomenims suteikė prasmingą vizualizaciją.

Galima pastebėti, kad ir nežymus „eps“ parametro reikšmės didėjimas ženkliai sumažina klasterių

kiekį. Kai „min_samples“ parametro reikšmė išlieka ta pati, o „eps“ reikšmė lygi 1.5 (3.10 pav.)

susidaro 20 klasterių (įskaitant triukšmo klasterį), padidėjus „eps“ reikšmei iki 2.6 (3.11 pav.)

susidaro 4 klasteriai, o dar padidinus iki 3.5 (3.12 pav.) susidaro tik du klasteriai – kadangi „eps“

reikšmė didelė, taškai ir jų grupės turi tarpusavyje būti pakankamai toli, kad būtų jas galima

atskirti į klasterius.

3.10 pav. "DBSCAN" klasterizavimas. "eps" vertė 1.5, "min_samples" vertė 5.

20

3.11 pav. "DBSCAN" klasterizavimas. "eps" vertė 2.6, "min_samples" vertė 5

3.12 pav. "DBSCAN" klasterizavimas. "eps" vertė 3.5, "min_samples" vertė 5

21

Akivaizdi „min_samples“ parametro įtaka duomenims: kai „eps“ parametro reikšmė tokia

pati, tačiau „min_samples“ kiekis padidėja iš 5 (3.13 pav.) į 10 (3.14 pav.), klasterių kiekis

padidėja nuo 20 iki 32 klasterių (įskaitant triukšmo klasterį). Tą patį galima pastebėti ir kai „eps“

reikšmė lygi 2.6, o „min_samples“ kiekis padidėja dvigubai (3.11 pav. ir 3.14 pav.) – klasterių

kiekis irgi padidėja, bet tik iš keturių į penkis klasterius.

3.13 pav. "DBSCAN" klasterizavimas. "eps" vertė 1.5, "min_samples" vertė 10

22

3.14 pav. "DBSCAN" klasterizavimas. "eps" vertė 2.6, "min_samples" vertė 10

Taigi, „DBSCAN“ algoritmo parametrų: didesnės „eps“ reikšmės lems mažiau klasterių, o

didesnės „min_sample“ reikšmės lems daugiau klasterių, reikia atrasti tinkamą balansą tarp šių

reikšmių, norint, kad algoritmas veiktų teisingai.

3.2.3. Algoritmo taikymas normuotoms duomenų aibėms

„DBSCAN“ algoritmo rezultatas normuotai duomenų aibei, neatrinkus pagrindinių požymių, bet

išmetus visiškai nereikšmingus požymius ir klasės požymį, neduoda jokios informacijos. Šis

algoritmas pilnai duomenų aibei buvo taikytas su įvairiausiais parametrais [..., ...]. Visada

gaunamas tas pats rezultatas – vienas didelis klasteris.

„DBSCAN“ algoritmas taip pat buvo bandytas taikyti normuotai duomenų aibei atrinktiems

požymiams („z“, „i“, „r“). Šį kartą algoritmas suklasterizavo duomenų aibę, tačiau rezultatai

neduoda jokios naudingos informacijos. Tai galime spręsti tiek iš žemiau esančių grafikų, tiek iš

Siluetų metodo rodiklių (pav. XX). Nors aukštesni rodikliai, turėtų rodyti geresnius grafikus,

tačiau pritaikius „t-SNE“ metodą, lengvesniam klasterizuotų duomenų atvaizdavimui,

„DBSCAN“ algoritmo parametrai su aukštesnėmis Silueto rodiklio vertėmis rodo prastesnius

grafikus. Taip pat matome, kad aukščiausios Silueto rodiklio vertės siekia vos daugiau negu 0.1,

o tai yra labai nedaug. Šiuo atveju, geriausiai grafikai atrodo esant mažiausioms „Silhouette“

rodiklio vertėms, t.y. kai jos yra apie -0.6.

23

3.15 pav. "Silhouette" metodo reikšmių priklausomybės nuo "min_samples" ir "eps" parametrų reikšmių

taškinė diagrama

3.16 pav. "DBSCAN" klasterizavimas. "eps" vertė 0.01, "min_samples" vertė 5

24

3.17 pav. "DBSCAN" klasterizavimas. "eps" vertė 0.05, "min_samples" vertė 5

Akivaizdu, kad pirmu atveju gaunamas rezultatas (3.16 pav.), kai „eps“ vertė lyg 0.01, o

„min_samples“ vertė lygi 5, turi ženkliai per daug klasterių, esančių sąlyginai mažame plote, ir

didžioji dalis objektų (net 2914 objektų) buvo priskirti triukšmui. Antroje diagramoje (3.17 pav.),

kai „eps“ vertė lyg 0.05, o „min_samples“ vertė lygi 5, matome nemažą kiekį objektų priskirtų

triukšmui (317), tačiau beveik visi objektai (2670) yra nuspalvinti žaliai, t.y. priskirti klasteriui

„Cluster 0“, ir beveik nėra objektų priskirtų „Cluster 1“ (tik 8 objektai).

Taigi, galime daryti išvadas, kad “DBSCAN” klasterizavimo algoritmo taikymas šiai

duomenų aibei yra netikslingas. Negauname jokių rezultatų su visus požymius turinčia duomenų

aibe (visi objektai priklauso vienai aibei), ir gauname jokios naudingos informacijos

neduodančius rezultatus su duomenų aibe, kurioje yra atrinkti požymiai - daugiau nei 85% objektų

yra priskirti triukšmui arba vienai duomenų aibei.

25

3.2.4. Klasterizavimo tikslumas

Palyginus pradinės duomenų aibės klases ir „DBSCAN“ priskirtas etiketes („labels“) galime

palyginti kokia dalis taškų buvo nustatyta teisingai. Rezultatų palyginimui buvo naudotas

optimaliai suklasterizuoti duomenys, kai „DBSCAN“ parametrai „eps“ yra lygus 2.6, o

„min_samples“ lygus 5.

3.18 pav. optimaliai suklasterizuoti naudojantis „DBSCAN“

„Cluster 0“ atitinka klasę 0 (žvaigždė), „Cluster 1” atitinka klasę 0 (galaktika) ir „Cluster 2”

atitinka klasę 2 (kvazaras), „Cluster 3“ neatitinka jokios klasės (3.18 pav.).

Atlikus skaičiavimus buvo rasta, kad „DBSCAN“ neteisingai suklasterizavo 188 objektus, t.y.

~6.26% visų atrinktų objektų buvo priskirta klaidinga klasė. Galima teigti, kad šio algoritmo, kai

jo parametrai „eps“ yra lygus 2.6, o „min_samples“ kiekis yra lygus 5, tikslumas yra 93.74%.

Šiame grafike, matome taškus, kurie buvo priskirti ne tai klasei (grafike taškai nuspalvinti ta

spalva, kuriai klasei jie turėtų priklausyti pagal originalią duomenų aibę, o „DBSCAN“ algoritmo

buvo priskirti ne tai klasei).

Galima pastebėti, kad „DBSCAN“ algoritmas daliai objektų priskyrė kitokias etiketes, negu yra

to objekto realios klasės. Viena iš to priežasčių yra ir ne 100% tikslus „tSNE“ algoritmo – apatiniai

violetiniai taškai (3.19 pav.), turėtų priklausyti klasei 0, tačiau ir „tSNE“ vizualizacijoje, yra

matyti, kad šie taškai priskirti pirmos klasės grupei. Todėl pačio „DBSCAN“ algoritmo tikslumas

galimai būtų didesnis, jei visi taškai būtų teisingiau sugrupuoti „tSNE“ algoritmo.

26

3.19 pav. "DBSCAN" suklasterizuoti objektai, kurių etiketės nesutampa su objektų klasėmis. Objektai

nuspalvinti pagal jų klases.

3.20 pav. "DBSCAN" suklasterizuoti objektai, kurių etiketės sutampa su objektų klasėmis. Objektai

nuspalvinti pagal jų klases.

27

Tačiau yra matomas didelis ir aiškus objektų grupių atsiskyrimas žiūrint tik į teisingai atskirtus

taškus žemiau (3.20 pav.)

Klasterizuotų ir neklasterizuotų duomenų aibės, jų aprašomosios statistikas pagal klases ir jas

atitinkančias etiketes (angl. „label“) yra labai panašios, nes neatitinkančių taškų kiekis yra mažas

ir pakankamai pasiskirstęs tarp klasių. Kaip pavyzdį, galime palyginti „redshift“ požymį

stačiakampėmis diagramomis (3.21 pav.). Akivaizdu, kad „redshift“ reikšmės ir jų pasiskirstymas

tarp skirtingų klasių yra beveik toks pat kaip ir tarp skirtingų klasterių etikečių. Vieninteliai du

aiškiai matomi skirtumai, yra ketvirtos etiketės atsiradimas, tačiau jai priklauso tik 15 taškų ir jos

reikšmių vidurkis yra arti visų taškų reikšmių vidurkio. Taip pat klasė 0, po klasterizavimo

nebeteko išskirčių (angl. „outliers“). Labai panašią informaciją gausime ir lyginant kitus aktualius

požymius („z“, „i“, „r“, „g“, „u“).

3.21 pav. stačiakampės diagramos lyginančios „redshift“ reikšmių pasiskirstymą tarp priskirtų etikečių ir

originalių klasių.

Taigi, tiksliausiai veikiančio „DBSCAN“ algoritmo parametrai „eps“ ir „min_samples“ yra lygūs

atitinkamai 2.6 ir 5. Jis teisingai suklasterizuoja 93.74% visų šios duomenų aibės objektų. Dalis

šios aibės objektų (15 objektų) buvo priskirti neegzistuojančiai naujai klasei, likę objektai buvo

priskirti klaidingai klasei (173 objektai).

28

3.2.5. Algoritmo jautrumas mažiems duomenų aibės pokyčiams

Štai čia matome „t-SNE“ algoritmo pritaikymą ir vizualizaciją šiek tiek kitokiems duomenims:

buvo paimti po 1000 atsitiktinių objektų iš kiekvienos klasės, tačiau naujo parametro

„random_seed“ reikšmė lygi 2 , todėl buvo paimti šiek tiek kitokie objektai ir naujai duomenų

aibei pritaikius „t-SNE“ metodą su tokiais pat parametrais („perplexity“ lygi 50, o „max_iter“

lygus 750) vizualizacija nežymiai skiriasi (3.22 pav.).

3.22 pav. "t-SNE" metodo taikymas atsitiktinai atrinktiems duomenims, kai "random_seed" reikšmė yra

lygi 2.

Palyginus naujos ir buvusios duomenų aibių klasterizavimą „DBSCAN“ algoritmu su sąlyginai

geriausiais parametrais (išrinkus iš poskyryje „3.1.2” vaizduotų grafikų optimalaus grafiko

parametrus), prieš tai pritaikius „t-SNE“ dimensijų mažinimo metodą, matome didelius skirtumus

grafikuose (3.23 pav. ir 3.24 pav.)

29

3.23 pav. "DBSCAN" klasterizavimas atsitiktinai atrinktiems duomenims, kai "random_seed" reikšmė

lygi 2. "eps" vertė 2.6, "min_samples" vertė 5.

3.24 pav. "DBSCAN" klasterizavimas atsitiktinai atrinktiems duomenims, kai "random_seed" reikšmė

lygi 42. "eps" vertė 2.6, "min_samples" vertė 5.

30

Naudojant tuos pačius parametrus panašiai duomenų aibei, galime gauti labai skirtingus

rezultatus. Šiuo atveju, visus taškus, priklausančius 0 ir 1 klasėms, atitinkančius klasterius sujungė

į vieną klasterį, o dalį 2 klasę atitinkančio klasterio taškų priskyrė naujam klasteriui. Viso

klaidingai priskirta 1194 objektai. Šiame pavyzdyje labai aiškiai galime pamatyti, kad

„DBSCAN“ algoritmas objektus jungia į klasterius pagal jų tarpusavio tankį ir nežymus pokytis

tarp objektų atstumų, šiuo atveju sumažino tikslumą nuo 94.3% iki vos 60.2%.

Taigi, galima teigti, kad kiekvienai duomenų aibei gali tekti ieškoti ir taikyti naujus „DBSCAN“

parametrus, net jei iš pirmo žvilgsnio duomenų aibių aprašomoji statistika yra panaši, abi aibės

turi po tiek pat objektų ir jų vizualizacijos atrodo panašiai.

3.2.6. Išvados

Nustatant šiuos parametrus buvo pastebėta, kad didėjančios „eps“ reikšmės mažina klasterių

kiekį, nes vis daugiau taškų priskiria tam pačiam klasteriui, o didėjančios „min_samples“

reikšmės didina klasterių kiekį.

Taip pat buvo pastebėta, kad nežymus pokytis objektų aibėje lemia truputi kitokį taškų

pasiskirstymą panaudojus dimensijos mažinimo metodą, ir dėl didesnio mažo kiekio taškų tankio

„DBSCAN“ algoritmas su tais pačiais parametrais veikia stebėtinai prasčiau - visiškai

nebeatskiria taškų priklausančių dviem klasėm.

Geriausias „DBSCAN“ grafikas, kuris optimaliai priskiria objektus klasteriam yra

pritaikytas sumažintos dimensijos „t-SNE“ metodo pagalba duomenim. Šiuo atveju parametrai

„eps“ yra lygus 2.6, „min_samples“ yra lygus 5 ir algoritmas teisingai suklasterizavo 93.4%

objektų.

31

4. IŠVADOS

Atlikus klasterizavimo analizę naudojant „kMeans“ ir „DBSCAN“ metodus, įvertinta, kad

kiekvienas algoritmas turi savo privalumų ir trūkumų, priklausomai nuo duomenų struktūros ir

pasirinktų parametrų. Naudojant „kMeans“, optimalus klasterių skaičius buvo nustatytas kaip 3,

o geriausi rezultatai pasiekti su parametrais „n_clusters“ = 3 ir „init“ = „k-means++“. Duomenų

normalizavimas ir išskirčių pašalinimas ženkliai pagerino klasterių atskyrimą ir buvo pasiektas

91.87% tikslumas.

Naudojant „DBSCAN“ algoritmą, buvo nustatyta, kad parametrų „eps“ ir „min_samples“

reikšmės stipriai veikia klasterių susidarymą: didesnės „eps“ reikšmės sumažina klasterių skaičių,

o didesnės „min_samples“ reikšmės jį padidina. Išanalizuota, kad algoritmas veikė geriausiai, kai

buvo pritaikytas „t-SNE“ metodu sumažintiems duomenims, ir su optimaliais parametrais „eps“

= 2.6, „min_samples“ = 5 buvo pasiektas 93.4% tikslumas. Tačiau pastebėta, kad mažas duomenų

pokytis ar nedideli taškų tankio skirtumai gali reikšmingai paveikti klasterizacijos rezultatus, tai

rodo klasterių nestabilumą. Tačiau visais atvejais „DBSCAN“ algoritmas sumažintos dimensijos

duomenyse atskyrė objektus priklausančius „Cluster 2“ (4.1 pav.) objektų grupei nuo likusių

objektų.

Apibendrinant, eksperimentų rezultatai rodo, kad atitaikius parametrus abu algoritmai

pakankamai tiksliai suklastetrizuoja objektus į grupes atitinkančias objektų klases, tačiau

„DBSCAN“ algoritmas šiai duomenų aibei (4.1 pav.) buvo nežymiai tikslesnis – 93.4%. Taip pat,

nustatytas svyruojantis klasterių stabilumas – „Cluster 2“ objektų grupė visada atskiriama taikant

„DBSCAN“ metodą, tačiau ne visada naudojant „kMeans“ metodą.

4.1 pav. Sumažintos dimensijos, optimaliai suklasterizuoti duomenys naudojantis „DBSCAN“

32

ŠALTINIAI

• https://scikit-learn.org/stable/modules/clustering.html

• https://machinelearningmastery.com/clustering-algorithms-with-python/

• https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html

• https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.KMeans.html

• https://pandas.pydata.org/docs/

• https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss1

https://scikit-learn.org/stable/modules/clustering.html
https://machinelearningmastery.com/clustering-algorithms-with-python/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.KMeans.html
https://pandas.pydata.org/docs/
https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss1

33

KODAS

#!/usr/bin/env python

coding: utf-8

In[1]:

importing libraries

libraries for file manipulation

import pandas as pd

import numpy as np

libraries for easier visualisation

import matplotlib.pyplot as plt

import matplotlib.colors as mcolors

import seaborn as sns

libraries for dimensionality reduction

import scipy.stats as stats

from sklearn import manifold

from sklearn.decomposition import TruncatedSVD

from sklearn.cluster import KMeans, DBSCAN, HDBSCAN, AgglomerativeClustering

from sklearn.mixture import GaussianMixture

from sklearn.metrics import silhouette_score

#from sklearn import metrics

from matplotlib import cm

setting options

pd.set_option('display.max_columns', None)

pd.set_option('float_format', '{:f}'.format)

In[2]:

importing dataset

df_orig = pd.read_csv("star_classification.csv", delimiter=',')

Preparing data

In[3]:

df_orig.drop(columns=['obj_ID', 'alpha', 'delta', 'spec_obj_ID', 'rerun_ID', 'MJD'],

inplace=True)

In[4]:

panaikinti ekstremalių atsiskyrėlių vieną eilutę, kurioje reikšmės yra -9999

df_orig = df_orig[(df_orig[['u', 'g', 'r', 'i', 'z']] != -9999).all(axis=1)]

encoding labels

df_orig.replace(['GALAXY', 'QSO', 'STAR'], [0, 1, 2], inplace=True)

Set a random seed for reproducibility

random_seed = 42 for DBSCAN reproduction, 2 for kMeans reproduction

random_seed = 42

random_seed = 2

Sample 1,000 instances per class with a fixed seed

#df = df_orig.groupby('class', group_keys=False).apply(lambda x:

x.sample(n=1000)).reset_index(drop=True)

df = df_orig.groupby('class', group_keys=False).apply(lambda x: x.sample(n=1000,

random_state=random_seed)).reset_index(drop=True)

kiti masyvai nebuvo normalizuot, nes jie buvo pavadinimai, kampo laipsniai,

kategorijos ar ID

normalization_cols = ['redshift', 'u', 'g', 'r', 'i', 'z']

34

normavimas

dfminmax = df.copy()

for col in normalization_cols:

 #min-max normalization

 dfminmax[col] = (dfminmax[col] - dfminmax[col].min()) / (dfminmax[col].max() -

dfminmax[col].min())

In[5]:

dfminmax.columns

In[6]:

feature_cols = ['redshift', 'u', 'g', 'r', 'i', 'z']

no_class_col = ['u', 'g', 'r', 'i', 'z', 'run_ID', 'cam_col', 'field_ID', 'redshift',

'plate', 'fiber_ID']

data = dfminmax[feature_cols].values

data_full = dfminmax[no_class_col].values

Dimensionallity reduction tSNE

In[7]:

tsne = manifold.TSNE(n_components=2,

 perplexity=50,

 n_iter=750,

 metric='canberra',

 random_state=42)

data_tsne = tsne.fit_transform(dfminmax[feature_cols].values)

plt.figure(figsize=(10, 8)) # Set the figure size

class_labels = ["Galaktika (0)", "Kvazaras (1)", "Žvaigždė (2)"]

class_values = [0, 1, 2]

colors = cm.viridis(np.linspace(0, 1, len(class_values)))

for val, label, color in zip(class_values, class_labels, colors):

 class_mask = dfminmax['class'] == val

 plt.scatter(data_tsne[class_mask, 0], data_tsne[class_mask, 1], color=color,

label=label, alpha=0.7)

plt.title("t-SNE", fontsize=20)

plt.xlabel('t-SNE Dimensija 1', fontsize=18)

plt.ylabel('t-SNE Dimensija 2', fontsize=18)

plt.legend(loc="lower right", fontsize=16)

Show the plot

plt.show()

Clustering

DBSCAN

Defining functions

In[127]:

def dbscan_plot_one(X, params):

 # Initialize and fit DBSCAN with the provided parameters

 dbscan = DBSCAN(**params)

 labels = dbscan.fit_predict(X)

 # Plot the clusters

 plt.figure(figsize=(10, 8))

 scatter = plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.7)

35

 # Set title

 plt.title(f"DBSCAN: eps={params['eps']}, min_samples={params['min_samples']}",

fontsize=16)

 # Add legend if there are fewer than 10 unique labels

 unique_labels = np.unique(labels)

 if len(unique_labels) < 10:

 labels_list = []

 for label in unique_labels:

 if label == -1:

 # Outliers in grey

 labels_list.append(plt.scatter([], [], color='grey', label='Outlier'))

 else:

 # Use the colormap for cluster labels

 color = scatter.cmap(label / (max(unique_labels) if max(unique_labels)

> 0 else 1))

 labels_list.append(plt.scatter([], [], color=color, label=f'Cluster

{label}'))

 # Add legend with labels

 plt.legend(handles=labels_list, loc='lower right')

 # Set axis labels and remove ticks

 plt.xlabel('Feature 1')

 plt.ylabel('Feature 2')

 plt.xticks([])

 plt.yticks([])

 plt.tight_layout()

 plt.show()

 return labels

def dbscan_plot_2d(X, parameters):

 # Create a figure with six subplots arranged vertically

 fig, axes = plt.subplots(2, 3, figsize=(20, 12))

 axes = axes.flatten()

 # Loop through each set of parameters and corresponding axis

 for ax, params in zip(axes, parameters):

 # Initialize and fit DBSCAN with the current parameters

 dbscan = DBSCAN(**params)

 labels = dbscan.fit_predict(X)

 # Plot the clusters

 scatter = ax.scatter(

 X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.7

)

 # Set title

 ax.set_title(

 f"DBSCAN: eps={params['eps']}, min_samples={params['min_samples']}",

 fontsize=12

)

 # Add legends to each subplot if there are fewer than 10 unique labels

 unique_labels = np.unique(labels)

 if len(unique_labels) < 10:

 # I cant create labels for legend globally somewhy, so I need to add to

the list of labels each time seperately

 labels_list = []

 for label in unique_labels:

 if label == -1:

 # Outliers in grey

36

 labels_list.append(ax.scatter([], [], color='grey',

label='Outlier'))

 else:

 # Use the colormap for cluster labels

 color = scatter.cmap(label / (max(unique_labels) if

max(unique_labels) > 0 else 1))

 labels_list.append(ax.scatter([], [], color=color, label=f'Cluster

{label}'))

 # Add legend with labels

 ax.legend(handles=labels_list, loc='lower right')

 # Set axis labels and remove ticks

 ax.set_xlabel('Feature 1')

 ax.set_ylabel('Feature 2')

 ax.set_xticks([])

 ax.set_yticks([])

 plt.tight_layout()

 plt.show()

def dbscan_tsne_plot(X, dbscan_params=None):

 # run DBSCAN

 dbscan = DBSCAN(**dbscan_params)

 labels = dbscan.fit_predict(X)

 # reduce data to 2D using tSNE

 tsne = manifold.TSNE(n_components=2,

 perplexity=50,

 n_iter=750,

 metric='canberra',

 random_state=42)

 data_tsne = tsne.fit_transform(X)

 # plot the data

 plt.figure(figsize=(12, 8))

 # Number of clusters in labels, ignoring noise if present (-1 label)

 unique_labels = set(labels)

 n_clusters = len(unique_labels) - (1 if -1 in labels else 0)

 # Generate colors for the clusters

 colors = cm.nipy_spectral(np.linspace(0, 1, n_clusters))

 # Plot each cluster

 for k, col in zip(sorted(unique_labels), colors):

 if k == -1:

 # Black color for noise

 col = [0, 0, 0, 1]

 label_name = 'Noise'

 else:

 label_name = f'Cluster {k}'

 class_member_mask = (labels == k)

 xy = data_tsne[class_member_mask]

 plt.scatter(

 xy[:, 0],

 xy[:, 1],

 c=[col],

 label=label_name,

 edgecolors='k',

 alpha=0.7,

 s=50

)

37

 plt.title('DBSCAN Clustering with t-SNE Visualization', fontsize=16)

 plt.xlabel('t-SNE Dimension 1', fontsize=14)

 plt.ylabel('t-SNE Dimension 2', fontsize=14)

 plt.legend(loc='best', fontsize=12)

 plt.grid(True)

 plt.show()

 return labels

DBSCAN for reduced data

In[128]:

params for tSNE data

dbscan_params = [

 {'eps': 1.5, 'min_samples': 5},

 {'eps': 2.6, 'min_samples': 5},

 {'eps': 3.5, 'min_samples': 5}, ## geras

 {'eps': 1.5, 'min_samples': 10},

 {'eps': 2.6, 'min_samples': 10},

 {'eps': 3.5, 'min_samples': 10}

]

dbscan_plot_2d(data_tsne, dbscan_params)

In[129]:

label_list = []

for param in dbscan_params:

 labels = dbscan_plot_one(data_tsne, param)

 label_list.append(labels)

In[130]:

for label in label_list:

 print(np.unique(label))

DBSCAN for not reduced data (cia oof grafikai xd)

In[131]:

labels = dbscan_plot_one(data_tsne, {'eps': 2.1, 'min_samples': 5, 'metric':

'cosine'})

In[132]:

dbscan_params = {

 'eps': 0.01,

 'min_samples': 5

}

labels = dbscan_tsne_plot(data, dbscan_params)

In[133]:

dbscan_params = {

 'eps': 0.25,

 'min_samples': 18

}

labels2 = dbscan_tsne_plot(data, dbscan_params)

In[134]:

np.unique(labels)

38

In[135]:

pd.DataFrame(labels2).value_counts()

In[]:

In[136]:

dbscan_params = {

 'eps': 2,

 'min_samples': 15

}

dbscan_tsne_plot(data_full, dbscan_params)

neveikia, reikes parodyt, kad ant data_full sitas algo tsg neveikia:D

Evaluating clustering results

In[137]:

########## duomenu aibe su atrinktais duomenim ##########

Finding optimal eps

scores_list = []

Finding optimal eps and min_samples

for _eps in np.arange(0.001, 0.25, 0.02):

 for _min_sample in np.arange(2, 20, 2):

 dbscan = DBSCAN(eps=_eps, min_samples=_min_sample)

 labels = dbscan.fit_predict(data)

 # Make sure there is more than one cluster

 if len(set(labels)) > 1:

 sil_score = silhouette_score(data, labels)

 # Save the parameters and scores

 scores_list.append({

 'eps': _eps,

 'min_samples': _min_sample,

 'silhouette_score': sil_score,

 })

 print('round done')

scores_df = pd.DataFrame(scores_list)

In[138]:

PLOTTING SCORES ####

Plot Silhouette Score

plt.figure(figsize=(12, 6))

scatter = plt.scatter(scores_df['eps'], scores_df['min_samples'],

c=scores_df['silhouette_score'], cmap='viridis')

colorbar = plt.colorbar(scatter)

colorbar.set_label('Silhouette Score', fontsize=13)

plt.xlabel('eps', fontsize = 14)

plt.ylabel('min_samples', fontsize = 14)

plt.title('Silhouette Score for Different DBSCAN Parameters', fontsize = 16)

plt.show()

In[139]:

39

########## tSNE duomenu aibe ##########

Finding optimal eps

scores_list = []

Finding optimal eps and min_samples

for _eps in np.arange(1.5, 3.25, 0.25):

 for _min_sample in np.arange(2, 20, 2):

 dbscan = DBSCAN(eps=_eps, min_samples=_min_sample)

 labels = dbscan.fit_predict(data_tsne)

 # Make sure there is more than one cluster

 if len(set(labels)) > 1:

 sil_score = silhouette_score(data_tsne, labels)

 # Save the parameters and scores

 scores_list.append({

 'eps': _eps,

 'min_samples': _min_sample,

 'silhouette_score': sil_score,

 })

 print('round done')

scores_df = pd.DataFrame(scores_list)

In[140]:

scores_df

In[141]:

PLOTTING SCORES ####

Plot Silhouette Score

plt.figure(figsize=(12, 6))

scatter = plt.scatter(scores_df['eps'], scores_df['min_samples'],

c=scores_df['silhouette_score'], cmap='viridis')

colorbar = plt.colorbar(scatter)

colorbar.set_label('Silhouette Score', fontsize=13)

plt.xlabel('eps', fontsize = 14)

plt.ylabel('min_samples', fontsize = 14)

plt.title('Silhouette Score for Different DBSCAN Parameters', fontsize = 16)

plt.show()

In[142]:

########## NORMAL DATA ##########

Finding optimal eps

for _eps in np.arange(0.05, 1.0, 0.05):

 _eps = round(_eps, 2)

 dbscan = DBSCAN(eps=_eps, min_samples=5)

 labels = dbscan.fit_predict(data)

 # Calculate the Silhouette Score (ignoring noise points labeled as -1)

 if len(set(labels)) > 1: # Make sure there is more than one cluster

 score = silhouette_score(data, labels)

 print(f"DBSCAN with eps={_eps}, min_samples=5 - Silhouette Score:

{score:.3f}")

 else:

 print(f"DBSCAN with eps={_eps}, min_samples=5 - 1 cluster detected.")

Finding optimal min_sample

for _min_sample in np.arange(2, 50, 10):

 dbscan = DBSCAN(eps=0.05, min_samples=_min_sample)

 labels = dbscan.fit_predict(data)

40

 # Calculate the Silhouette Score (ignoring noise points labeled as -1)

 if len(set(labels)) > 1: # Make sure there is more than one cluster

 score = silhouette_score(data, labels)

 print(f"eps=0.6, min_samples={_min_sample} - Silhouette Score: {score:.3f}")

 else:

 print(f"eps=0.05, min_samples={_min_sample} - 1 cluster detected.")

In[143]:

########## FULL DATA ##########

for _eps in np.arange(0.1, 10.0, 0.5):

 #_eps = round(_eps, 2)

 dbscan = DBSCAN(eps=_eps, min_samples=100)

 labels = dbscan.fit_predict(data_full)

 # Calculate the Silhouette Score (ignoring noise points labeled as -1)

 if len(set(labels)) > 1: # Make sure there is more than one cluster

 score = silhouette_score(data_full, labels)

 print(f"DBSCAN with eps={_eps}, min_samples=5 - Silhouette Score:

{score:.3f}")

 else:

 print(f"DBSCAN with eps={_eps}, min_samples=5 - Only one cluster detected,

score not applicable.")

Tried calculating with different min_samples (2, 4, 10, 20, 100) and different eps

(from 0.01 to 10.0) and clustering always fails

In[]:

Analysing best plots

In[144]:

dbscan_labels = dbscan_plot_one(data_tsne, {'eps': 2.6, 'min_samples': 5})

In[145]:

df_tsne = pd.DataFrame(data_tsne, columns=['feature1', 'feature2'])

df_tsne['class'] = dfminmax['class']

df_tsne['cluster_label'] = dbscan_labels

df_tsne.value_counts('cluster_label')

Jeigu reiktu

df_tsne.loc[df_tsne['cluster_label'] == 1, 'cluster_label'] = 100

df_tsne.loc[df_tsne['cluster_label'] == 2, 'cluster_label'] = 1

df_tsne.loc[df_tsne['cluster_label'] == 100, 'cluster_label'] = 2

In[146]:

df_tsne_different = df_tsne[df_tsne['class'] != df_tsne['cluster_label']]

df_tsne_different.value_counts('class')

In[147]:

df_tsne_different.value_counts('cluster_label')

In[148]:

df_tsne_different.value_counts('cluster_label').sum()

In[149]:

dfminmax['cluster_label'] = df_tsne['cluster_label']

41

dfminmax[dfminmax['cluster_label'] == 2].describe()

In[150]:

dfminmax[dfminmax['class'] == 0].describe()

In[]:

In[151]:

df_tsne.describe()

Plot (in)correctly assigned points

In[152]:

df_tsne_different = df_tsne[df_tsne['class'] != df_tsne['cluster_label']]

plt.figure(figsize=(10, 8))

plt.title(f"Non-coinciding points", fontsize=16)

scatter = plt.scatter(df_tsne_different['feature1'], df_tsne_different['feature2'],

c=df_tsne_different['cluster_label'], cmap='viridis', s=100, alpha=0.7)

plt.xlabel('Feature 1')

plt.ylabel('Feature 2')

handles, labels = scatter.legend_elements()

plt.legend(handles, labels, loc='lower right', title="Cluster Label")

In[153]:

df_orig.head()

In[154]:

df_tsne_different = df_tsne[df_tsne['class'] != df_tsne['cluster_label']]

plt.figure(figsize=(10, 8))

plt.title(f"Non-coinciding points", fontsize=16)

scatter = plt.scatter(df_tsne_different['feature1'], df_tsne_different['feature2'],

c=df_tsne_different['class'], cmap='viridis', s=100, alpha=0.7)

plt.xlabel('Feature 1')

plt.ylabel('Feature 2')

handles, labels = scatter.legend_elements()

plt.legend(handles, labels, loc='lower right', title="class", fontsize=12)

In[155]:

df_tsne_same = df_tsne[df_tsne['class'] == df_tsne['cluster_label']]

plt.figure(figsize=(10, 8))

plt.title(f"Coinciding points", fontsize=16)

scatter = plt.scatter(df_tsne_same['feature1'], df_tsne_same['feature2'],

c=df_tsne_same['class'], cmap='viridis', s=100, alpha=0.7)

plt.xlabel('Feature 1')

plt.ylabel('Feature 2')

handles, labels = scatter.legend_elements()

plt.legend(handles, labels, loc='lower right', title="class", fontsize=12)

In[156]:

dfminmax['cluster_label'] = df_tsne['cluster_label']

In[157]:

42

dfminmax.head()

In[158]:

dfminmax['incorrect_labels'] = dfminmax[dfminmax['class'] !=

dfminmax['cluster_label']].value_counts('cluster_label')

In[159]:

plt.figure(figsize=(8, 10))

Create boxplots for 'redshift' grouped by 'cluster_label' and 'class'

plt.figure(figsize=(14, 6))

Boxplot for 'redshift' by 'cluster_label'

plt.subplot(1, 2, 1)

sns.boxplot(x=dfminmax['cluster_label'], y=dfminmax['redshift'])

plt.title("Redshift by Cluster Label")

plt.xlabel("Cluster Label")

plt.ylabel("Redshift")

Boxplot for 'redshift' by 'class'

plt.subplot(1, 2, 2)

sns.boxplot(x=dfminmax['class'], y=dfminmax['redshift'])

plt.title("Redshift by Class")

plt.xlabel("Class")

plt.ylabel("Redshift")

plt.tight_layout()

plt.show()

In[160]:

df_outliers = dfminmax[dfminmax['class'] != dfminmax['cluster_label']]

In[161]:

df_outliers.loc[df_outliers['class'] == 2, 'redshift'].mean(),

df_outliers.loc[df_outliers['cluster_label'] == 2, 'redshift'].mean()

Jei butu daugiau reiksmiu butu belekoks palyginimas cia gautas

In[162]:

ok cia pas mane nelabai kas yra daryti ig, bet tipo galima pastebeti, kad redshift =

0 arba labai labai maza reiksme

sns.boxplot(x=dfminmax['class'], y=dfminmax['redshift'])

In[163]:

sns.boxplot(x=df_outliers['class'], y=df_outliers['redshift'])

In[164]:

sns.boxplot(x=df_outliers['cluster_label'], y=df_outliers['redshift'])

In[165]:

sns.boxplot(x=dfminmax['class'], y=dfminmax['i'])

In[166]:

sns.boxplot(x=df_outliers['class'], y=df_outliers['i'])

In[]:

43

In[167]:

normal data analysing

In[168]:

dbscan_params = {

 'eps': 0.01,

 'min_samples': 5

}

labels = dbscan_tsne_plot(data, dbscan_params)

In[169]:

dbscan_params = {

 'eps': 0.05,

 'min_samples': 5,

 'leaf_size': 25

}

labels2 = dbscan_tsne_plot(data, dbscan_params)

In[170]:

dbscan_params = {

 'eps': 0.05,

 'min_samples': 5,

 'leaf_size': 35

}

labels2 = dbscan_tsne_plot(data, dbscan_params)

In[171]:

df_tsne = pd.DataFrame(data_tsne, columns=['feature1', 'feature2'])

df_tsne['label'] = dfminmax['class']

df_tsne['cluster_label'] = labels

df_tsne.value_counts('cluster_label')

In[172]:

dfminmax['cluster_label'] = df_tsne['cluster_label']

In[173]:

plt.figure(figsize=(8, 10))

Create boxplots for 'redshift' grouped by 'cluster_label' and 'class'

plt.figure(figsize=(14, 6))

Boxplot for 'redshift' by 'cluster_label'

plt.subplot(1, 2, 1)

sns.boxplot(x=dfminmax['cluster_label'], y=dfminmax['redshift'])

plt.title("Redshift by Cluster Label")

plt.xlabel("Cluster Label")

plt.ylabel("Redshift")

Boxplot for 'redshift' by 'class'

plt.subplot(1, 2, 2)

sns.boxplot(x=dfminmax['class'], y=dfminmax['redshift'])

plt.title("Redshift by Class")

plt.xlabel("Class")

44

plt.ylabel("Redshift")

plt.tight_layout()

plt.show()

In[]:

In[]:

KMeans - getting the amounts of clusters with 'elbow', 'silhouette'. Using it on

t-SNE data(WHICH IS BAD).

In[8]:

wcss = [] # List to store WCSS values

Try different numbers of clusters

for n_clusters in range(1, 11):

 kmeans = KMeans(n_clusters=n_clusters, random_state=42)

 kmeans.fit(data_tsne)

 wcss.append(kmeans.inertia_)

Plot the WCSS values

plt.figure(figsize=(8, 5))

plt.plot(range(1, 11), wcss, marker='o')

plt.xlabel('Klasterių skaičius')

plt.ylabel('WCSS')

plt.title('Elbow metodas')

plt.show()

In[9]:

silhouette_scores = []

Try different numbers of clusters

for n_clusters in range(2, 11): # Silhouette score is not defined for 1 cluster

 kmeans = KMeans(n_clusters=n_clusters, init='k-means++', max_iter=300, tol=0.001,

random_state=42)

 labels = kmeans.fit_predict(data_tsne)

 silhouette_scores.append(silhouette_score(data_tsne, labels))

Plot the Silhouette Scores

plt.figure(figsize=(8, 5))

plt.plot(range(2, 11), silhouette_scores, marker='o')

best params - 'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 0.001

plt.xlabel('Klasterių skaičius')

plt.ylabel('Silhouette reikšmė')

plt.title('Silhouette metodas')

plt.show()

kMeans

Defining functions

In[10]:

def kmeans_plot_one(X, params):

 # Initialize and fit KMeans with the provided parameters

45

 kmeans = KMeans(**params, random_state=42)

 labels = kmeans.fit_predict(X)

 # Plot the clusters

 plt.figure(figsize=(10, 8))

 scatter = plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.7)

 # Set title

 plt.title(f"KMeans: n_clusters={params['n_clusters']}, init={params.get('init',

'k-means++')}", fontsize=18)

 # Add legend for cluster labels

 unique_labels = np.unique(labels)

 if len(unique_labels) < 10: # Add legend only if there are fewer than 10 clusters

 labels_list = []

 for label in unique_labels:

 # Use the colormap for cluster labels

 color = scatter.cmap(label / (max(unique_labels) if max(unique_labels) > 0

else 1))

 labels_list.append(plt.scatter([], [], color=color, label=f'Cluster

{label}'))

 # Add legend with labels

 plt.legend(handles=labels_list, loc='lower right', fontsize=14)

 # Set axis labels and remove ticks

 plt.xlabel('Feature 1', fontsize=18)

 plt.ylabel('Feature 2', fontsize=18)

 plt.xticks(fontsize=18)

 plt.yticks(fontsize=18)

 plt.tight_layout()

 plt.show()

 return labels

def kmeans_visual_comparison(X, param_grid):

 # Create subplots for all parameter combinations

 n_params = len(param_grid)

 n_rows = (n_params + 2) // 3 # Rows for the grid layout

 fig, axes = plt.subplots(n_rows, 3, figsize=(18, 6 * n_rows))

 axes = axes.flatten()

 for i, (ax, params) in enumerate(zip(axes, param_grid)):

 # Run KMeans with the current parameters

 kmeans = KMeans(**params, random_state=42)

 labels = kmeans.fit_predict(X)

 # Plot the clusters

 scatter = ax.scatter(

 X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.7

)

 # Add title with parameters

 title = (

 # f"n_clusters={params.get('n_clusters', 3)} "

 # f"init={params.get('init', 'k-means++')} "

 # f"n_iter={params.get('n_iter', 300)} "

 f"tol={params.get('tol', 1e-4)}"

)

 ax.set_title(title, fontsize=18)

 ax.set_xticks([])

 ax.set_yticks([])

 # Hide unused subplots

 for ax in axes[len(param_grid):]:

46

 ax.axis('off')

 plt.tight_layout()

 plt.show()

def kmeans_tsne_plot(X, kmeans_params=None):

 # Run KMeans

 kmeans = KMeans(**kmeans_params, random_state=42)

 labels = kmeans.fit_predict(X)

 # Reduce data to 2D using t-SNE

 tsne = manifold.TSNE(n_components=2,

 perplexity=50,

 n_iter=750,

 metric='canberra',

 random_state=42)

 data_tsne = tsne.fit_transform(X)

 # Plot the data

 plt.figure(figsize=(12, 8))

 # Number of clusters in labels

 n_clusters = kmeans_params['n_clusters']

 colors = cm.nipy_spectral(np.linspace(0, 1, n_clusters))

 # Plot each cluster

 for k, col in zip(range(n_clusters), colors):

 label_name = f'Cluster {k}'

 class_member_mask = (labels == k)

 xy = data_tsne[class_member_mask]

 plt.scatter(

 xy[:, 0],

 xy[:, 1],

 c=[col],

 label=label_name,

 edgecolors='k',

 alpha=0.7,

 s=50

)

 plt.title('kMeans klasterizavimas, kai dimensijos mažinamos po kMeans',

fontsize=20)

 plt.xlabel('t-SNE Dimensija 1', fontsize=18)

 plt.ylabel('t-SNE Dimensija 2', fontsize=18)

 plt.legend(loc='best', fontsize=14)

 plt.grid(True)

 plt.xticks(fontsize=14)

 plt.yticks(fontsize=14)

 plt.show()

 return labels

KMEANS for reduced data

In[11]:

Define parameter combinations for testing

param_grid = [

 # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-4},

 # {'n_clusters': 4, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-4},

 # {'n_clusters': 9, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-4},

 # n_clusters - 3 best.

 # {'n_clusters': 3, 'init': 'random', 'max_iter': 300, 'tol': 1e-4},

47

 # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-4},

 # init method - k-means++ better.

 # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 10, 'tol': 1e-4},

 # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-4},

 # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 900, 'tol': 1e-4},

 # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 500, 'tol': 1e-4},

 # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 800, 'tol': 1e-4},

 # max_iter - no change really.

 {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-6},

 {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-5},

 {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-4},

 {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 0.001},

 {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-2},

 {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 1e-1},

 # tol - 0.001 best. Can't seem to get it to be perfect though.

 # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 10, 'tol': 0.0001},

 # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 0.0001},

 # {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 0.1},

]

best params - 'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol': 0.001

Run the comparison

kmeans_visual_comparison(data_tsne, param_grid)

KMEANS for NOT reduced data, then after the data gets reduced

In[12]:

kmeans_tsne_plot(data, {'n_clusters': 3, 'init': 'k-means++', 'max_iter': 300, 'tol':

0.001})

Evaluating clustering results. results are used visually in next steps,

visualising with 'silhouette'.

In[13]:

####### tSNE DATA ##########

Parameter search for KMeans

scores_list = []

Finding optimal n_clusters and initialization method

for n_clusters in range(2, 20): # Test different numbers of clusters

 for init_method in ['k-means++', 'random']: # Test different initialization

methods

 kmeans = KMeans(n_clusters=n_clusters, init=init_method, random_state=42)

 labels = kmeans.fit_predict(data) # Run KMeans on the raw data

 # Ensure there is more than one cluster

 if len(set(labels)) > 1:

 sil_score = silhouette_score(data_tsne, labels) # Compute silhouette

score on t-SNE data

 # Save the parameters and scores

 scores_list.append({

 'n_clusters': n_clusters,

 'init_method': init_method,

 'silhouette_score': sil_score,

 })

 print(f'n_clusters={n_clusters} round done')

48

Convert results into a DataFrame

scores_df = pd.DataFrame(scores_list)

Display the top results

print(scores_df.sort_values(by='silhouette_score', ascending=False).head())

In[14]:

PLOTTING SCORES ####

import matplotlib.pyplot as plt

import seaborn as sns

Set up the figure

plt.figure(figsize=(12, 6))

Create a scatter plot of silhouette scores

scatter = plt.scatter(

 scores_df['n_clusters'],

 scores_df['silhouette_score'],

 c=scores_df['init_method'].apply(lambda x: 0 if x == 'k-means++' else 1),

 cmap='viridis',

 s=100,

 alpha=0.8,

 edgecolor='k'

)

Add a colorbar for the initialization method

cbar = plt.colorbar(scatter, ticks=[0, 1])

cbar.ax.set_yticklabels(['k-means++', 'random'])

cbar.set_label('init reikšmė', fontsize=16)

Customize the plot

plt.xlabel('Klasterių skaičius (n_clusters)', fontsize=14)

plt.ylabel('Silueto rodiklis', fontsize=14)

plt.title('KMEANS klasterizavimas. Silueto rodiklis pagal parametrus', fontsize=16)

plt.grid(True, linestyle='--', alpha=0.6)

Adjust x-axis ticks to include all tested n_clusters

plt.xticks(range(scores_df['n_clusters'].min(), scores_df['n_clusters'].max() + 1))

Show the plot

plt.tight_layout()

plt.show()

'Elbow' testing on original data(THE GOOD WAY).

In[15]:

wcss_list = []

Range of cluster numbers to test

n_clusters_range = range(1, 20) # Adjust as needed

Initialization methods to test

init_methods = ['k-means++', 'random']

Perform KMeans clustering and compute WCSS for each combination

for n_clusters in n_clusters_range:

 for init_method in init_methods:

 kmeans = KMeans(n_clusters=n_clusters, init=init_method, random_state=42)

 kmeans.fit(data) # Use original data for clustering

 # Retrieve WCSS (inertia_)

 wcss = kmeans.inertia_

49

 # Save the parameters and WCSS

 wcss_list.append({

 'n_clusters': n_clusters,

 'init_method': init_method,

 'wcss': wcss,

 })

 print(f'n_clusters={n_clusters} round done')

Convert results into a DataFrame

wcss_df = pd.DataFrame(wcss_list)

Display the results

print(wcss_df.head())

Optional: Plot WCSS values to visualize the elbow

plt.figure(figsize=(10, 6))

for init_method in init_methods:

 subset = wcss_df[wcss_df['init_method'] == init_method]

 plt.plot(subset['n_clusters'], subset['wcss'], marker='o', label=f"Init:

{init_method}")

plt.xlabel('Number of Clusters (n_clusters)')

plt.ylabel('Within-Cluster Sum of Squares (WCSS)')

plt.title('Elbow Method for Optimal Number of Clusters')

plt.legend()

plt.grid(True, linestyle='--', alpha=0.6)

plt.tight_layout()

plt.figure(figsize=(10, 6))

for init_method in init_methods:

 subset = wcss_df[wcss_df['init_method'] == init_method]

 plt.plot(subset['n_clusters'], subset['wcss'], marker='o', label=f"Init:

{init_method}")

plt.xlabel('Number of Clusters (n_clusters)')

plt.ylabel('Within-Cluster Sum of Squares (WCSS)')

plt.title('Elbow Method for Optimal Number of Clusters')

plt.legend()

plt.grid(True, linestyle='--', alpha=0.6)

Add this line to set x-axis ticks to integer cluster numbers

plt.xticks(n_clusters_range)

plt.tight_layout()

plt.show()

Analysing best plots

In[16]:

dbscan_labels = kmeans_plot_one(data_tsne, {'n_clusters': 3, 'init': 'k-means++',

'max_iter': 300, 'tol': 0.001})

In[18]:

df_tsne = pd.DataFrame(data_tsne, columns=['feature1', 'feature2'])

df_tsne['label'] = dfminmax['class']

df_tsne['cluster_label'] = dbscan_labels

In[19]:

df_tsne.describe()

In[20]:

50

df_tsne_different = df_tsne[df_tsne['label'] != df_tsne['cluster_label']]

df_tsne_different.value_counts('label')

In[21]:

Apkeiciam cluster_label vietomis, kad atitiktu klases

df_tsne.loc[df_tsne['cluster_label'] == 1, 'cluster_label'] = 100

df_tsne.loc[df_tsne['cluster_label'] == 2, 'cluster_label'] = 1

df_tsne.loc[df_tsne['cluster_label'] == 100, 'cluster_label'] = 2

In[22]:

df_tsne_different = df_tsne[df_tsne['label'] != df_tsne['cluster_label']]

df_tsne_different.value_counts('label')

In[23]:

df_tsne_different.value_counts('cluster_label')

In[22]:

Find the best mapping from cluster_label to label

from scipy.optimize import linear_sum_assignment

from sklearn.metrics import confusion_matrix

Create a confusion matrix between true labels and cluster labels

conf_matrix = confusion_matrix(df_tsne['label'], df_tsne['cluster_label'])

Use Hungarian algorithm to find the optimal label-to-cluster mapping

row_ind, col_ind = linear_sum_assignment(-conf_matrix)

Create a mapping dictionary

mapping = {cluster: label for cluster, label in zip(col_ind, row_ind)}

Map cluster labels to match the true labels

df_tsne['cluster_label'] = df_tsne['cluster_label'].map(mapping)

Recalculate mismatched rows after remapping

df_tsne_different = df_tsne[df_tsne['label'] != df_tsne['cluster_label']]

Display updated mismatch counts

print("Neatitinakčių klasių objektų skaičius:")

print(df_tsne_different.value_counts('label'))

Plot incorrectly assigned points

In[23]:

import matplotlib.pyplot as plt

import numpy as np

def visualize_tsne_results(df_tsne):

 mismatches = df_tsne['label'] != df_tsne['cluster_label']

 num_mismatches = mismatches.sum()

 total_samples = len(df_tsne)

 percentage_mismatched = (num_mismatches / total_samples) * 100

 # Scatter plot for true labels

 plt.figure(figsize=(18, 6))

 plt.subplot(1, 3, 1)

 scatter = plt.scatter(df_tsne['feature1'], df_tsne['feature2'],

c=df_tsne['label'], cmap='viridis', s=70, alpha=0.8)

 cbar = plt.colorbar(scatter, ticks=np.unique(df_tsne['label'])) # Set colorbar

ticks to unique label values

 cbar.set_label('Tikslios klasės', fontsize=16)

51

 cbar.ax.tick_params(labelsize=14)

 plt.title('t-SNE klasteriai', fontsize=18)

 plt.xlabel('Dimensija 1', fontsize=16)

 plt.ylabel('Dimensija 2', fontsize=16)

 plt.xticks(fontsize=14)

 plt.yticks(fontsize=14)

 # Scatter plot for cluster labels

 plt.subplot(1, 3, 2)

 scatter = plt.scatter(df_tsne['feature1'], df_tsne['feature2'],

c=df_tsne['cluster_label'], cmap='viridis', s=70, alpha=0.8)

 cbar = plt.colorbar(scatter, ticks=np.unique(df_tsne['cluster_label'])) # Set

colorbar ticks to unique cluster labels

 cbar.set_label('Klasteriai', fontsize=16)

 cbar.ax.tick_params(labelsize=14)

 plt.title('kMeans klasės', fontsize=18)

 plt.xlabel('Dimensija 1', fontsize=16)

 plt.ylabel('Dimensija 2', fontsize=16)

 plt.xticks(fontsize=14)

 plt.yticks(fontsize=14)

 # Scatter plot for mismatches

 plt.subplot(1, 3, 3)

 plt.scatter(

 df_tsne.loc[~mismatches, 'feature1'],

 df_tsne.loc[~mismatches, 'feature2'],

 c='gray',

 s=70,

 alpha=0.5,

 label='Atitinka'

)

 plt.scatter(

 df_tsne.loc[mismatches, 'feature1'],

 df_tsne.loc[mismatches, 'feature2'],

 c='red',

 s=70,

 alpha=0.8,

 label='Neatitinka'

)

 plt.legend(fontsize=14)

 plt.title(f't-SNE atitikimas pagal klases\n{percentage_mismatched:.2f}%

neatitinka', fontsize=18)

 plt.xlabel('Dimensija 1', fontsize=16)

 plt.ylabel('Dimensija 2', fontsize=16)

 plt.xticks(fontsize=14)

 plt.yticks(fontsize=14)

 plt.tight_layout()

 plt.show()

 # Print the percentage of mismatches

 print(f"Percentage of mismatched objects: {percentage_mismatched:.2f}%")

In[24]:

visualize_tsne_results(df_tsne)

In[37]:

df_tsne.describe()

In[25]:

dfminmax['cluster_label'] = df_tsne['cluster_label']

In[26]:

52

dfminmax['incorrect_labels'] = dfminmax[dfminmax['class'] !=

dfminmax['cluster_label']].value_counts('cluster_label')

In[27]:

plt.figure(figsize=(8, 10))

Create boxplots for 'redshift' grouped by 'cluster_label' and 'class'

plt.figure(figsize=(14, 6))

Boxplot for 'redshift' by 'cluster_label'

plt.subplot(1, 2, 1)

sns.boxplot(x=dfminmax['cluster_label'], y=dfminmax['redshift'])

plt.title("Redshift by Cluster Label")

plt.xlabel("Cluster Label")

plt.ylabel("Redshift")

Boxplot for 'redshift' by 'class'

plt.subplot(1, 2, 2)

sns.boxplot(x=dfminmax['class'], y=dfminmax['redshift'])

plt.title("Redshift by Class")

plt.xlabel("Class")

plt.ylabel("Redshift")

plt.tight_layout()

plt.show()

In[28]:

df_outliers = dfminmax[dfminmax['class'] != dfminmax['cluster_label']]

df_outliers - neatitinakcios klasterizavimo rezultato klases

df_outliers.describe()

In[29]:

num_class_0_outliers = df_outliers[df_outliers['class'] == 0].shape[0]

print(f"Neatitinkančių objektų kiekis 0 klasei: {num_class_0_outliers}")

num_class_1_outliers = df_outliers[df_outliers['class'] == 1].shape[0]

print(f"Neatitinkančių objektų kiekis 1 klasei: {num_class_1_outliers}")

num_class_2_outliers = df_outliers[df_outliers['class'] == 2].shape[0]

print(f"Neatitinkančių objektų kiekis 2 klasei: {num_class_2_outliers}")

In[30]:

df_outliers.loc[df_outliers['class'] == 2, 'redshift'].mean(),

df_outliers.loc[df_outliers['cluster_label'] == 2, 'redshift'].mean()

nu ir ok, cia tavo padaryta, nu ir gerai, man sito nereikia, nes tik 1 objektas 2

kategorijos blogai kateogiruoztas, nu tai lol?

In[31]:

for col in normalization_cols:

 plt.figure(figsize=(14, 6))

 # First subplot: Boxplot of the variable by 'class' in dfminmax

 plt.subplot(1, 2, 1)

 sns.boxplot(x='class', y=col, data=dfminmax)

 plt.title(f'{col.capitalize()} reikšmė, t-SNE algoritmas.', fontsize=16)

 plt.xlabel('Klasė', fontsize=14)

 plt.ylabel(col.capitalize(), fontsize=14)

 plt.xticks(fontsize=12)

 plt.yticks(fontsize=12)

 # Second subplot: Boxplot of the variable by 'class' in df_outliers

53

 plt.subplot(1, 2, 2)

 sns.boxplot(x='class', y=col, data=df_outliers)

 plt.title(f'{col.capitalize()} reikšmė, kMeans persidengiančių objektų

neatitikimas.', fontsize=16)

 plt.xlabel('klasė', fontsize=14)

 plt.ylabel(col.capitalize(), fontsize=14)

 plt.xticks(fontsize=12)

 plt.yticks(fontsize=12)

 # Adjust layout and display the plots

 plt.tight_layout()

 plt.show()

Comparison of df_outliers(mismatching KMeans labels and classes) and dfminmax

In[32]:

for col in normalization_cols:

 plt.figure(figsize=(14, 6))

 # First subplot: Boxplot of the variable by 'class' in dfminmax

 plt.subplot(1, 2, 1)

 sns.boxplot(x='class', y=col, data=dfminmax)

 plt.title(f'{col.capitalize()} reikšmė, t-SNE algoritmas.', fontsize=16)

 plt.xlabel('Klasė', fontsize=14)

 plt.ylabel(col.capitalize(), fontsize=14)

 plt.xticks(fontsize=12)

 plt.yticks(fontsize=12)

 # Second subplot: Boxplot of the variable by 'class' in df_outliers

 plt.subplot(1, 2, 2)

 sns.boxplot(x='class', y=col, data=df_outliers)

 plt.title(f'{col.capitalize()} reikšmė, kMeans persidengiančių objektų

neatitikimas.', fontsize=16)

 plt.xlabel('klasė', fontsize=14)

 plt.ylabel(col.capitalize(), fontsize=14)

 plt.xticks(fontsize=12)

 plt.yticks(fontsize=12)

 # Adjust layout and display the plots

 plt.tight_layout()

 plt.show()

In[33]:

df_tsne = pd.DataFrame(data_tsne, columns=['feature1', 'feature2'])

df_tsne['label'] = dfminmax['class']

df_tsne['cluster_label'] = labels

df_tsne.value_counts('cluster_label')

In[34]:

dfminmax['cluster_label'] = df_tsne['cluster_label']

