VILNIAUS UNIVERSITETAS
MATEMATIKOS IR INFORMATIKOS FAKULTETAS
INFORMACINIY SISTEMY INZINERIJOS STUDIJY PROGRAMA

Duomeny tyryba. Klasterizavimo algoritmy analizé.

Savarankisko darbo ataskaita.

Atliko: Justinas Rimavicius, Edvardas
Razanskas

VU el. p.: edvardas.razanskas@mif.stud.vu.lt,
justinas.rimavicius@mif.stud.vu.lt

Vertino: dr. Jolita Bernataviciené

Vilnius
2024

mailto:edvardas.razanskas@mif.stud.vu.lt
mailto:justinas.rimavicius@mif.stud.vu.lt

TURINYS

LIS L8 101 PP PPPPPPPTPPPPRE 2
R V7 To - [PPSR 3
1.1. Darbo tikslas ir UZAaViNi@i........ceeeieeerieieiie ettt e st e e s e st e b e snee e saree s 3
O D 15 o To =T a 1 I T TP 3

D B 10T o o V=T o U =T o F- 2SR 4
2.1. Tiriamos duomeny aibés ir jos POZYMIY APraSYMAscueeeeecieeeeeiiieeeeiieeeescrreeeeerreeeeesrteeessseneeesnes 4
2.2. Pozymiy ir objekty apdOrojimMasccocciiiiiiciiieiiiieee et e sttt e st e et e e s s e e s sbte e e s sbta e e e sreaeeesanee 5
2.3, ObJekty @trinKiMas ...ccicciiii et e e s e e e st e e e s bte e e e sbee e e e sbtaeeesartaeeesaneaaeenne 6
2.4. DUOMENY AIDES NOIMAVIMAS ..iiiiiiiieieciiieecciieeeeetee e eete e e e ette e e e ebteeeesbtaeessbteeesssteeessstneessnssanessnes 6
2.5. SUMAZINtos diMENSIJOS AUOMENYS ...ccicuiiiieiciiieecciiee e et e e eectte e e e ette e e e e tteeeeeataeeeestaeeesstaeessessaneesanes 6

3. KIASTOIIZAVIMAS ..ttt ettt et b e s bt st sttt e bt e be e s b et e ae e et e et e e be e ehe e saeeeabeeabe e beennes 8
3.1. ,kMeans” algoritmas/METOTASc.eeecueiiiriiietiieeee ettt et e et e e et e e st e e eteeeeaeeeereeenaees 8
3.1.1. F YT 13V 1 1 = USRS 8
3.1.2. LN_clusters” reikSmMEs NUSTAtYMASviii i aae e 9
3.1.3. Algoritmo taikymas sumazZintos dimensijos dUOMENIMS........ccccccueveeeiieeeeecieee e 11
3.1.4. Algoritmo taikymas pries mazinant dimensijas......ccccccvueeeviiiieeeriiee e 13
3.15. SHUBTO FOAIKIIS ...ttt sb e s sabe e sbe e e sareeeas 14
3.1.6. KIasterizavimo tiKSIUMASccooviiiiiiiie et et 15
3.1.7. IS ...ttt ettt b e bttt ettt b e bt s bt e eat e bt ebeenbeenhe e satesaneeane 16

3.2. ,DBSCAN" algoritmMas/MELOTAScc.eeecueiieieieiee et ettt e etee et e et e eetee e eteeeetaeesaaeeebeeeesreeans 17
3.2.1. F YT 13V 1 1 T PSP 17
3.2.2. Algoritmo taikymas sumaZintos dimensijos dUuomMeNimMS.......ccccccveeeiriieeeencieee e 18
3.2.3. Algoritmo taikymas normuotoms duomeny aib&mscccceviiiiiiiivciiee e 21
3.2.4. Klasterizavimo tiKSIUM@Scoouiiiiiiiiiieee ettt s 24
3.2.5. Algoritmo jautrumas maziems duomeny aibés pokyCiamsccccceeecieeeeiiieeeecciiee e, 27
3.2.6. IVATOS ...ttt st et r e sr e e s 29

N 1V To [0 PP P TP PRSPPI 30
SAIEINIAI .ottt 31
1o o I T USROS PPROPRPURT 32

1. IVADAS

1.1. Darbo tikslas ir uzdaviniai
Sio darbo tikslas — SDSS (Sloan‘o skaitmeninio dangaus tyrimo DR17) duomeny im&iai su

pilnu ir atrinkty pozymiy rinkiniu, bei tos paties duomeny imties sumazintos dimensijos duomeny
rinkiniui pritaikyti ,,kMeans® ir ,,DBSCAN* klasterizavimo algoritmus, palyginti jy rezultatus,
apibrézti susidariusiy klasteriy specifika.
Darbo uzdaviniai:
Trumpai aprasyti tiriamg duomeny aibe, jos pozymius, pagrindines savybes.
Pasirinkti ir pagristi pagal kokius pozymius bus atlickamas klasterizavimas.
Naudojant ,,Elbow* ir ,,Silhouette* metodus jvertinti optimaly klasteriy skaiciy.
Suklasterizuoti duomenis naudojant ,kMeans“ ir ,,DBSCAN‘“ Kklasterizavimo
algoritmus.
5. Patikrinti, kokig jtaka daro klasterizavimui iSskirtys bei duomeny dimensijos

mazinimas. Kaip keiciasi tendencijos klasteriuose?
6. Apibendrinti rezultatus, pastebétas tendencijas klasteriams, pateikti jy interpretacija.

A

1.2. Darbo jrankiai
Duomeny apdorojimas, transformacija, analizé, dimensijy mazinimo metodai ir
klasterizavimo metodai buvo pritaikyti naudojant ,,Python 3.12.0” programavimo kalbg ir jos
bibliotekas (daugiau zitréti skyriy Kodas).

2. DUOMENUY ANALIZE

2.1. Tiriamos duomeny aibés ir jos pozymiy aprasymas

Pateiktoje zvaigzdziy klasifikacijos duomeny aibéje (,,Stellar Classification Dataset*) yra 100000
eiluciy, 18 pozymiy stulpeliy. Jutikliy matavimai yra ,,float” tipo (t.y. priklauso realiyjy skaiciy
aibei) , ,,class“ pozymis yra ,,object” tipo (t.y. simboliai), lik¢ pozymiai yra ,,int* tipo (t.y.
priklauso sveikyjy skaiciy aibei).

Data columns (total 18 columns):
Non-Null Count

#

W00 o= W W @

17

Column

obj ID 100000
alpha 166600
delta lee0aa
u 188006
g 100000
r l800aa
i 180608
z lee0aa
run_ID 188680
rerun_ID lee0aa
cam_col 160600
field ID 18060
spec_obj ID 166680
class 166000
redshift 166000
plate 166600
MJD 180008
fiber ID l800aa

non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null
non-null

floate4d
floate4d
floate4d
floats4d
floate4d
floate4d
floate4d
floate4d
ints4
int64
ints4
int64
floate4d
object
floate4d
inth4d
int64
ints4

dtypes: floatb4(18), inted(7), object(1)

2.1 pav. pradiné duomeny aibé

Duomeny aibés poZymiy apraSymai:

obj_ID = objekto identifikatorius, unikali dangaus kiino verté, identifikuojanti objekta

CAS naudojamame vaizdy kataloge.

alpha = desiniojo pakilimo kampas (pagal J2000 epocha)

delta = deklinacijos kampas (pagal J2000 epochg)
u = ultravioletinis astrofotometrinés sistemos filtras
g = zaliasis astrofotometrinés sistemos filtras

r = raudonasis astrofotometrinés sistemos filtras

I = artimyjy infraraudonyjy spinduliy filtras astrofotometriné sistemoje

4

z = infraraudonyjy spinduliy filtras astrofotometriné sistemoje

run_ID = serijos numeris, naudojamas konkreciam nuskaitymui identifikuoti
rereun_ID = pakartotinio paleidimo numeris, nurodantis, kaip vaizdas buvo apdorotas
cam_col = kameros stulpelis, skirtas skenavimo linijai nustatyti

field_ID = lauko numeris kiekvienam laukui identifikuoti

spec_obj_ID = unikalus optiniy spektroskopiniy objekty ID (tai reiskia, kad 2 skirtingi
stebéjimai su tuo paciu spec_obj ID turi turéti bendrg iSvesties klase)

class = objekto klasé (galaktika, zvaigzdé arba kvazaras)

redshift (raudonasis poslinkis) = raudonojo poslinkio verté, pagrista bangos ilgio
padidéjimu

plate = plokstés ID, identifikuojantis kiekvieng SDSS plokste

MJD = modifikuota Julijaus data, naudojama nurodyti, kada buvo paimta tam tikra
SDSS duomeny dalis

fiber ID = pluosto ID, identifikuojantis pluosta, kuris nukreipé Sviesg | Zidinio
plokStuma kiekvieno stebéjimo metu

2.2. Pozymiy ir objekty apdorojimas

Pasalinti Sie poZymiai, nedarantys jtakos kosminio kiino klasifikavimui:

,,obj ID*“ pozymis, nes tai identifikacinis numeris nedarantis jtakos duomenims;

»alpha® ir ,,delta® pozymiai nusako kosminio objekto pozicija, o jos néra susijusios su
skirtingy objekty (galaktiky, zvaigzdziy, kvazary) fizinémis savybémis;

»spec_obj ID*“ pozymis, nes 2 skirtingi stebéjimai su tuo paciu spec_obj ID turi turéti
bendra iSvesties klase, o visos §io pozymio reikSmés yra skirtingos;

wrerun_ID* pozymis, nes yra tik viena unikali reikSmé;

,,MID* poZymis, nes ji simbolizuoja data, kada uZfiksuotas stebéjimas

Duomeny aib¢ netur¢jo praleisty reikSmiy. Tolimesniems uzdaviniams pasirinkome ,,redshift®,

‘ 1] T T 7] > :
U 5 5g 5 50 5,51 11,2 POZYymIusS.

Duomeny aib¢ turéjo vieng eilute, kurioje ,,u, ,,g* ir ,,z* reikSmeés buvo -9999, tad §ig triukSmo
eilute panaikinome.

,,Class“ pozymis yra kategorinis pozymis, kuris turi tris unikalias reikSmes duomeny aibéje:
GALAXY - galaktika, QSO — kvazaras(ypac¢ Sviesus objektas galaktikos centre), STAR —
zvaigzde. Kiekviena $iy reikSmiy buvo pakeista atitinkamai j skaicius 0, 1, 2.

2.3. Objekty atrinkimas

Tolimesniam duomeny analizavimui, apdorojimui ir vizualizavimui buvo atsitiktinai atrinkti po
1000 objekty i kiekvienos klasés (2.2 pav.):

Data columns (total 12 columns):
Column Non-Null Count Dtype

5] u 3008 non-null floatB4
1 E 36860 non-null float64
2 r 30008 non-null float6s
3 i 3008 non-null floats4
4 z 36860 non-null float64
5 run_ID 3008 non-null inte4
6 cam_col 3660 non-null int64
7 field ID 3866 non-null intk4
8 class 3008 non-null inte4
g redshift 3660 non-null float64
16 plate 3008 non-null inte4

11 fiber_ID 36800 non-null int&4
dtypes: floate4(6), inted(6)

2.2 pav. duomeny aibé su pasirinktais objektais

2.4. Duomeny aibés normavimas
Duomeny normavimui buvo parinkti Sie pozymiai: ,redshift, ,u®, ,.g“ I, i ir ,;z* Kiti
pozymiai buvo nenormuoti, nes jie yra arba identifikaciniai (,,run_ID%, ,field ID*, ,,cam_col*,
»plate, ir ,fiber ID*) arba kategoriniai (,,class*). Duomenys buvo normuoti naudojant ,,min-
max‘ metoda (2.3 pav.)

u g r i z run_ID cam_col field_ID class redshift plate fiber_ID

count 3000000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000 3000.000000

mean 0505650 0.534968 0.475907 0557617 0.600594 4463.033667 3.531000 183.694667 1.000000 0.102498 5324.207333 451.430000
std 0.152596 0.139310 0.124104 0.149785 0.168291 1973851258 1.592655 144.563996 0.816633 0.132210 3010616165 274.568411
min 0.000000 0.000000 0.000000 0.000000 0.000000 109.000000 1.000000 12.000000 0.000000 0.000000 266.000000 1.000000

25% 0395331 0428814 0.383929 0455900 0.485856 3051.250000 2.000000 82.000000 0.000000 0.000458 2682.750000 221.750000
50% 0501572 0.564178 0.507172 0.584689 0.621816 4072.000000 4.000000 146.000000 1.000000 0.058794 5174.500000 438.000000
75% 0607117 0.635859 0.569526 0673526 0.726640 5415.000000 5.000000 239.250000 2.000000 0.162504 7696.250000 665.000000

max 1.000000 1.000000 1.000000 1.000000 1.000000 8162.000000 6.000000 980.000000 2.000000 1.000000 12547.000000 1000.000000

2.3 pav. min-max metodu normuotos duomeny aibés statistika

2.5. Sumazintos dimensijos duomenys

Zemiau esanéiame grafike (2.4 pav.) matome ,,t-SNE* grafika, pritaikyt atrinktiems poZzymiams.
LISNE“ metodo parametry reikSmeés: "max_iter" reikSmé lygi 750, o "perplexity" lygus 50,
"metric" lygi "canberra", ,random state* reikSmé lygi 42. Metodas ,,t-SNE“ buvo taikytas
atsitiktinai 3000 paimtiems objekty, kai parametras ,random_state” lygus 2. Siuo metodu
sumazinta iki 2 dimensijy duomeny aibé yra naudojama tolimesniuose zingsniuose — pagrinde
,KMeans“ ir ,,DBSCAN* klasterizavimo metody vaizdavimui.

t-SNE

201

t-SNE Dimensija 2

e Galaktika (0)

o Kvazaras (1)

—40 L] x P
Zvaigzdeé (2)

20 40

0
t-SNE Dimensija 1

2.4 pav. "t-SNE" metodu sumazintos dimensijos duomenys, kai pradinis atsitiktinis duomeny rinkinys
sudarytas naudojant ,,random_state* lygu 2.

,,DBSCAN“ klasterizavimui buvo naudojamas toks pat ,,t-SNE“ metodas, su tokiais pat
parametrais, taciau atsitiktiniai 3000 tiriamy objekty buvo paimti naudojant ,random_state” 42 (2.5
pav.) Matoma, kad objektai pasiskirste panasiai, taciau, kaip bus matoma véliau (skyrius 0

Algoritmo jautrumas maziems duomeny aibés pokyCiams), tai gali daryti didele jtaka
klasterizavimui.
t-SNE

40 4

20 A

t-SNE Dimensija 2

e Galaktika (0)
e Kvazaras (1)
. Zvaigzdé (2)

-40 =20 20 40

0
t-SNE Dimensija 1

2.5 pav. "t-SNE" metodu sumazintos dimensijos duomenys, kai pradinis atsitiktinis duomeny rinkinys
sudarytas naudojant ,,random_state* lygu 42.

3. KLASTERIZAVIMAS

3.1. ,,kMeans*“ algoritmas/metodas

3.1.1. Aprasymas
kMeans (angl. ,,K-Means Clustering™) yra centroidy pagrindu veikiantis klasterizavimo

algoritmas, kuris naudojamas grupéms (klasteriams) duomenyse identifikuoti pagal jy tarpusavio
atstumus. Sis algoritmas priskiria taskus tam klasteriui, kurio centroidas yra aréiausiai, iteratyviai
atnaujindamas centry pozicijas, kol rezultatai stabilizuojasi. KMeans dazniausiai naudojamas tais
atvejais, kai reikia aiSkiai apibrézty klasteriy, kuriy skai¢ius (angl. ,,n_clusters) nustatomas i§
anksto. Dél §ios priezasties KMeans yra efektyvus, ta¢iau jo rezultatai labai priklauso nuo pradinio
klasteriy skaiciaus nustatymo.

kMeans algoritme svarbiausi parametrai yra:

e n clusters: klasteriy skaiCius, kurj reikia i§ anksto nustatyti pagal duomeny
struktiirg arba optimizavimo metodus, tokius kaip Elbow ar Silhouette.

e init: pradinis centroidy nustatymo metodas, pvz., ,k-means++*, kuris pagerina
algoritmo efektyvumg, sumazindamas pradiniy pozicijy jautruma.

e max_iter: maksimalus iteracijy skai¢ius, per kurj centroidai optimizuojami.

e tol: tolerancijos riba, nustatanti, kiek centroidy pokytis tarp iteracijy gali biiti
ignoruojamas.
Siuo atveju K-Means algoritmas buvo taikytas $ioms normuotoms ,,min-max“ metodu

duomeny aibéms:

¢ Pilnai duomeny aibei, i$trynus klasés pozymj;

3 19

e Duomeny aibei su atrinktais pozymiais (,,u*, ,,g%, ,.,r, ,,i, ,,z*, ,,redshift®);
e Duomeny aibei su tais paciais atrinktais pozymiais, pritaikius ,,t-SNE* metoda
(dimensiSkumo mazinimo metoda).
Taip pat buvo pastebéta, kad ,,n_clusters® reik§mé turi buti nustatoma itin atidziai, nes

netinkamas klasteriy skaiCius gali lemti prasta grupiy atskyrimg. Optimalus klasteriy skaicius
buvo identifikuotas naudojant Elbow ir Silhouette metodus.

3.1.2. ,,n_clusters“ reikSmés nustatymas
Norint, kad ,,kMeans” metodas duoty reik§mingus rezultatus, svarbiausias parametras yra
,n_clusters®. Sio parametro nustatymui naudojome 2 metodus — ,,Elbow* ir ,,Silhouette*

Elbow metodo esmé — apskaiciuoti klaidy sumg (SSE, angl. ,,Sum of Squared Errors™)
kiekvienam klasteriy skaiciui ir jg atvaizduoti grafike. SSE yra rodiklis, kuris parodo, kiek
duomeny taskai nutole nuo savo klasterio centro.

Kai klasteriy skaicius didéja, SSE reik§mé mazéja, nes taSkai yra arciau savo klasteriy centry.
,Elbow” metodo grafike daznai pastebimas alkiinés taskas — vieta, kurioje SSE reikSmés
mazéjimas sulétéja. Sis taskas dazniausiai zymi optimaly klasteriy skai¢iy, nes nuo $io momento
didesnis klasteriy skaicius neduoda reikSmingo pageréjimo.

Silueto metodas yra naudojamas jvertinti klasterizavimo kokybg ir nustatyti optimaly klasteriy
skaiiy. Sis metodas remiasi silueto koeficientu, kuris parodo, kaip gerai kiekvienas taskas
priskirtas savo klasteriui, palyginti su kitais klasteriais.

Silhouette metodas

0.50 +

0.48 -

0.46

Silhouette reiksme

0.44 -

0.42 -

T T T

2 3 - 5 6 7 8 9 10
Klasteriy skaicius

3.1 pav. "Silhouette" reikSmiy ir klasteriy skai¢iaus priklausomybés linijiné diagrama.

10

1e6 Elbow metodas

3.0 A

2.5 A

2.0 A

WCSS
[
w

1.0

0.5

2 4 6 8 10
Klasteriy skaicius

3.2 pav. "Elbow" reikSmiy ir klasteriy skai¢iaus priklausomybeés linijiné diagrama.

,,Elbow* metode (3.2 pav.) matoma alkiiné, kai klasteriy skai¢ius yra 3, t.y. esant daugiau nei 3
klasteriams, klasterizavimas nesuteikia daug aiSkesnio rezultato.

,»Silhouette metode (3.1 pav.) matoma, jog esant 3 klasteriams, ,,Silhouette skaicius yra 0.42, 0
esant 5 jis yra 0.51, t.y. didZiausias. Tai néra optimaliausio klasteriy skai¢iaus suradimas, nes Sie
metodai buvo pritaikyti t-SNE dimensijy mazintiems duomenims, o §is metodas neislaiko globaliy
atstumy tarp objekty, kas yra svarbu Siam metodui. Sekanc¢iame punkte bus aiSkiau matoma, kaip
,»Silhouette” metodo skaicius pasikei€ia ir yra rodoma, jog optimalus klasteriy skai¢ius yra 3, kai
jo analizé yra atlickama nemazintiems dimensijy duomenims (3.8 pav. - 3.1.5 skiltis).

11

3.1.3. Algoritmo taikymas sumazintos dimensijos duomenims
Sekanciuose grafikuose atvaizduojami ,.kMeans* algoritmai t-SNE metodu sumazintos

dimensijos duomenims.
Pirmasis grafikas(xx pav.) vaizduoja ,,n_clusters* parametro pokytj. Matoma, jog efektyviausias
rezultatas esant 3 klasteriams — sekanciuose grafikuose $is skaicius ir bus naudojamas.

n_clusters=3 n_clusters=4 n_clusters=9

3.3 pav. "kMeans" klasterizavimas kei¢iantis "n_clusters" parametro reikSméms.

Sekantis grafikas — ,,init“ parametro keitimas (3.4 pav.). Pasirinkus ,,k-means++“ reik§mg
Klasteriy centrai yra optimalesnése vietose, nei naudojant ,,random*.

init=random init=k-means++

3.4 pav. "kMeans" klasterizavimas keiciant "init" parametro reikSmes.

Sekantys 2 grafikai(3.5 pav. ir 3.6 pav.) vaizduoja ,,max_iter* ir ,,tol* reikSmiy pokycius, taciau
Sie parametrai ,,kMeans* rezultato nepakeicia.

12

tol=1e-06

tol=1e-05

tol=0.0001

A

A

A

3

3.5 pav. "kMeans" klasterizavimas keiciant "tol" parametro reikSmes.

max_iter=10

max_iter=300

max_iter=900

oL

A

oL

A

-

A

3.6 pav. "kMeans" klasterizavimas kei¢iant "max_iter" parametro reikSmes.

Tolimesnei analizei buvo pasirinkti §ie parametrai: ,,n_clusters® lygus 3, ,.init“ lygus ,k-
means++*, ,tol“ lygus ,,0.0001* ir ,,max_iter* lygus 300.

13

3.1.4. Algoritmo taikymas pries mazinant dimensijas.
Naudojant tuos pacius optimalius parametrus(,,n_clusters* = 3; ,.init* =, k-means++*) sekanciame

grafike(3.7 pav.) yra matomas grafikas, kuris buvo gautas pirma atliekant ,kMeans*
klasterizavima, ir tik tada t-SNE dimensijos mazinimg rezultaty atvaizdavimui 2D aSyse. Matoma,
kad klasteriy pozicijos skiriasi nuo klasterizavimo, pirma darant t-SNE.

Akivaizdu, jog dimensijy mazinimas prie$ klasterizavimg ar po jo turi didele jtaka rezultatams —
Siai duomeny aibei su specifiSkais parametrais pirma atliekant dimensijy mazinimg, gaunamy
klasteriy centry pozicijos yra tikslesnés.

kMeans klasterizavimas, kai dimensijos mazinamos po kMeans

40 - e Cluster0
@ Clusterl
o Cluster 2
20 1

t-SNE Dimensija 2
o

t-SNE Dimensija 1

3.7 pav. "kMeans" klasterizavimas pries taikant "t-SNE" metoda.

14

3.1.5. Silueto rodiklis

KMEANS klasterizavimas. Silueto rodiklis pagal parametrus

r random
o
0.35
0304 O
- (¢]
g 0.25 'QE’
8 °)
S o020 e} g
Q +
= =
‘0"’ i
0.15 O
(@)
o o O
L] o
0.10 @ o
° ° e ® 8 ¢
O e O
0.05 0) [+ ®

T T T T T T T T T T T T T T T T T k-means++
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Klasteriy skaicius (n_clusters)

3.8 pav. Siluety metodo rodiklis keiciantis klasteriy skaiciui.

Auks¢iau esanc¢iame grafike(3.8 pav.) yra matomi ,,Silhouette* algoritmo rezultatai, kai Siam
algoritmui yra naudojami originaliis, nesumazinty dimensijy duomenys. Kai ,,n_clusters* reikSmé
lygi 3, Silueto rodiklio reik§mé yra didziausia. Sis klasteriy kiekis sutampa su ,,elbow* metodu
gautu klasteriy kiekiu ir su vizualiai matomu klasteriy kiekiu, tad galima daryti iSvada, jog Siai
duomeny aibei optimalus klasteriy kiekis yra 3.

Sie rezultatai, lyginant su pradZioje gautu “Silhouette” grafiku(pav. 3.1.2 skyriuj ten), yra tiksliis.
Kai naudojamas silueto algoritmas nemazinant dimensijy(3.8 pav.), atstumai tarp objekty pozicijy
iSlieka originalils, o tai yra svarbu $iam algoritmui.

15

3.1.6. Klasterizavimo tikslumas

t-SNE: atitikimas pagal klases

t-SNE su tiksliomis klasémis 5 t-SNE su klasteriy klasémis 2 8.13% neatitinka
40
20
w
~ g ~ o~
.5 o o o o
@ ~x G = G
1 10 0
3 8 & 3 &
£ s E ¢z £
=} X 0)
=
720 ,
Atitinka
—40 bt —40 —40 ® Neatitinka
0 0
-40 -20 0 20 40 -40 =20 0 20 40 -40 -20 0 20 40
Dimensija 1 Dimensija 1 Dimensija 1

3.9 pav. “t-SNE” dimensijy mazinimo ir “kMeans” klasterizavimo grafikai, jy persidengimo grafikas.

3.9 pav. pateikiami grafikai, kuriuose matoma ,t-SNE*“ dimensijy mazinimo, ,kMeans®
klasterizavimo ir jy persidengimo grafikai:

Pirmas grafikas kair¢je su klasémis, gautomis i§ ,,t-SNE* dimensijy mazinimo algoritmo,
antras grafikas viduryje vaizduoja ,.,kMeans” klasterizavimo rezultatg ir trecias grafikas desSingje
— iy grafiky persidengima(atitikimas — pilka spalva pazyméti objektai, neatitikimas — raudona).
Matoma, jog 8.13% objekty, klasterizuoty su ,.kMeans*, neatitiko su klasémis, lyginant su ,,t-
SNE* rezultatais.

Galima pastebéti, kurie objektai po ,.,kMeans* klasterizavimo neatitinka, lyginant su klasémis i$
»t-SNE“(3.16 pav.). 0 klasés objekty yra 146, 1 klasés — 97, ir 2 klasés tik 1. Tai reiskia, jog
»kKMeans* klasterizavimas pasirinktais parametrais 2 klas¢ klasterizavo beveik tobulai, taciau 0 ir
1 klasése buvo neatitikimy.

Neatitinkanciy objekty kiekis @ klasei: 146

Neatitinkanciy objekty kiekis 1 klasei: 97
Neatitinkandiy objekty kiekis 2 klasei: 1

Pav. 3.16. Klasiy pasiskirstymas klasterizavimo rezultatuose, kai klasteriy objektai neatitinka
klasiy.

16

3.1.7. ISvados
Atlikus klasterizavimo analize naudojant ,,KMeans* algoritma, nustatyta, kad optimalus

klasteriy skaicius miisy pasirinktai duomeny aibei yra 3. Tokig pacig iSvada galima daryti ir
panaudojus ,,Elbow* metoda sumazintos dimensijos duomeny rinkiniui ir ,,Silhouette* metoda
nesumazintos dimensijos duomeny rinkiniui, abiejy rezultatai sutampa — optimalus klasteriy
skaicius yra 3. Geriausi rezultatai pasiekiami su parametrais, kai ,,n_clusters* lygus 3 ir ,,init*
lygus ,,k-means++*. Lik¢ parametrai didelés jtakos rezultatams nedaré.

Taip pat buvo pastebéta, jog naudojant ,,t-SNE* algoritmu sumazintos dimensijos rezultatus
klasteriai buvo aiskiai atskirti, taiau klasteriy pozicijos skiriasi priklausomai nuo to, ar ,,t-SNE*
buvo atliktas pries klasterizavima, ar po jo. Klasterizavimas parodé¢, jog ,.kMeans*“ efektyviai
identifikuoja pagrindines duomeny grupes, tafiau neatitikimai (apie 8.13%) su tikrosiomis
klasémis rodo, kad kai kurie taskai yra sunkiai klasifikuojami dél jy panasumo j skirtingus
klasterius(dél klasiy persidengimo). Optimaliis rezultatai buvo gauti pasalinus iSskirtis ir tinkamai
normalizavus duomenis, o tai sustiprino klasteriy atsiskyrimg ir pagerino modelio tiksluma.

Taip pat buvo pastebétas klasteriy nestabilumas. Naudojant kitokig ,,seed” reikSme
duomeny normavimo zingsnyje, atsitiktiniy objekty pasirinkimo zingsnyje ar dimensijos
mazinimo zingsnyje algoritmas gali klasterizuoti duomenis kitaip, tokiu atveju neatitikimo su ,,t-
SNE* klasémis procentas buity daug didesnis nei 8.13%.

17

3.2. ,,DBSCAN* algoritmas/metodas
3.2.1. Aprasymas
DBSCAN (angl. ,,Density-Based Spatial Clustering of Applications with Noise) yra tankiu
pagristas klasterizavimo algoritmas, kuris naudojamas identifikuoti grupes (klasterius)
duomenyse pagal jy tankj. Algoritmas yra efektyvus aptinkant jvairiy formy ir dydziy klasterius,
kuriuose gali neisSkarto matytis atskiros tasky grupés. Taip pat, jis automatiskai nustato triukSmo
taskus (angl. ,,outliers®). ,,DBSCAN* neskiria fiksuoto skaiiaus klasteriy, kaip tai daro kai kurie
kiti algoritmai (pvz., K-means). Vietoj to, klasteriy skai¢ius priklauso nuo duomeny struktaros ir
Jjy tankumo.
,,DBSCAN* svarbiausi du parametrai yra:

e eps (epsilon): atstumas, kuris nustato, kaip arti taskai turi biiti vienas kito, kad jie bty
laikomi to paties klasterio dalimi.

« min_samples: minimalus tasky skaicius, reikalingas klasteriui suformuoti.

Siuo atveju ,,DBSCAN* algoritmas buvo taikytas §ioms normuotoms ,,min-max* metodu
duomeny aibém:
e pilnai duomeny aibei, iStrynus klasés pozymj;
b ,71

e duomeny aibei su atrinktais pozymiais (,,u’, ,,g%, ,.r*, ,,i, ,,z*, ,,redshift”);

e duomeny aibei su tai paciais atrinktais pozymiais, pritaikius ,,t-SNE*“ metoda
(dimensiSkumo mazinimo metodg).

18

3.2.2. Algoritmo taikymas sumazintos dimensijos duomenims
»DBSCAN* klasterizavimo algoritmas su skirtingais parametrais taikytas normuotai duomeny

aibei su atrinktais pozymiais (,,u“, ,,g“, ,.r, ,,i, ,,z*, ,redshift) ir ,,t-SNE“ metodo pagalba
sumazintos dimensijos iki 2 duomenims suteiké prasmingg vizualizacija.

Galima pastebéti, kad ir nezymus ,,eps® parametro reik§més didéjimas zenkliai sumazina klasteriy
kiekj. Kai ,,min_samples* parametro reikSmé islieka ta pati, 0 ,,eps* reiksmé lygi 1.5 (3.10 pav.)
susidaro 20 klasteriy (jskaitant triuk§mo klasterj), padidéjus ,,eps* reikSmei iki 2.6 (3.11 pav.)
susidaro 4 Kklasteriai, o dar padidinus iki 3.5 (3.12 pav.) susidaro tik du klasteriai — kadangi ,,eps*
reikSme didel¢, taskai ir jy grupés turi tarpusavyje biiti pakankamai toli, kad bty jas galima
atskirti j klasterius.

DBSCAN: eps=1.5, min_samples=5

Feature 2

Feature 1

3.10 pav. "DBSCAN" klasterizavimas. "eps" verté 1.5, "min_samples" verté 5.

19

Feature 2

Feature 2

DBSCAN: eps=2.6, min_samples=5

® Cluster0
® Clusterl
@ Cluster2

Cluster 3

Feature 1

3.11 pav. "DBSCAN" klasterizavimas. "eps" verté 2.6, "min_samples" verté 5

DBSCAN: eps=3.5, min_samples=5

- -

A o
o

y |

N

® Cluster0
Cluster 1

Feature 1

3.12 pav. "DBSCAN" klasterizavimas. "eps" verté 3.5, "min_samples" verté 5

20

Akivaizdi ,,min_samples* parametro jtaka duomenims: kai ,,eps parametro reik§mé tokia
pati, taCiau ,,min_samples* kiekis padidéja i§ 5 (3.13 pav.) i 10 (3.14 pav.), klasteriy kiekis
padidéja nuo 20 iki 32 klasteriy (iskaitant triukSmo klasterj). Ta pati galima pastebéti ir kai ,,eps*
reik§mé lygi 2.6, 0 ,,min_samples* kiekis padidéja dvigubai (3.11 pav. ir 3.14 pav.) — klasteriy
kiekis irgi padidéja, bet tik i$ keturiy i penkis klasterius.

DBSCAN: eps=1.5, min_samples=10

Feature 2

Feature 1

3.13 pav. "DBSCAN" klasterizavimas. "eps" verté 1.5, "min_samples" verté 10

21

DBSCAN: eps=2.6, min_samples=10

+ 5%
i

"

Feature 2

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4

Feature 1

3.14 pav. "DBSCAN" klasterizavimas. "eps" verté 2.6, "min_samples" verté 10

Taigi, ,,DBSCAN® algoritmo parametry: didesnés ,,eps reik§més lems maziau klasteriy, o
didesnés ,,min_sample* reikSmés lems daugiau klasteriy, reikia atrasti tinkama balansg tarp Siy
reik§miy, norint, kad algoritmas veikty teisingai.

3.2.3. Algoritmo taikymas normuotoms duomeny aibéms
,DBSCAN® algoritmo rezultatas normuotai duomeny aibei, neatrinkus pagrindiniy pozymiy, bet

i¥metus visiskai nereik§mingus pozymius ir klasés pozymj, neduoda jokios informacijos. Sis
algoritmas pilnai duomeny aibei buvo taikytas su jvairiausiais parametrais [..., ...]. Visada
gaunamas tas pats rezultatas — vienas didelis klasteris.

,DBSCAN* algoritmas taip pat buvo bandytas taikyti normuotai duomeny aibei atrinktiems
pozymiams (,,z%, ,.i ,.r*). Si karta algoritmas suklasterizavo duomeny aibe, tatiau rezultatai
neduoda jokios naudingos informacijos. Tai galime spresti tiek i§ Zemiau esanéiy grafiky, tiek i§
Siluety metodo rodikliy (pav. XX). Nors aukstesni rodikliai, turéty rodyti geresnius grafikus,
taCiau pritaikius ,,t-SNE*“ metoda, lengvesniam klasterizuoty duomeny atvaizdavimui,
,DBSCAN* algoritmo parametrai su aukstesnémis Silueto rodiklio vertémis rodo prastesnius
grafikus. Taip pat matome, kad auksciausios Silueto rodiklio vertés siekia vos daugiau negu 0.1,
o tai yra labai nedaug. Siuo atveju, geriausiai grafikai atrodo esant maZiausioms ,,Silhouette*
rodiklio vertéms, t.y. kai jos yra apie -0.6.

22

Silhouette Score for Different DBSCAN Parameters

1841 o o o
0.4
6] ® o o
141 @ e ¢ 0.2
(]
$ 124 e L ® S
—-— (=)
o 0
£ 00 o
T 104 e o ° g
th 7]
I]
c o
é 8 [] [] ® <
—021"
6 . . °
4| o o ° o —0.4
24 e . ° ° o °
0.05 0.10 0.15 0.20 0.25

eps

3.15 pav. "Silhouette" metodo reikSmiy priklausomybés nuo "min_samples" ir "eps" parametry reik§miy
taskiné diagrama

DBSCAN Clustering with t-SNE Visualization

v.)

40 -

20 A

Noise
Cluster 0
Cluster 1
Cluster 2
Cluster 3
Cluster 4
Cluster 5
Cluster 6
Cluster 7
Cluster 8
Cluster 9
Cluster 10

t-SNE Dimension 2

-20 1

-40 4

cCOeo0ocoo0co0oo000000OO

T T T

—4'10 —2'0 0 20 40
t-SNE Dimension 1

3.16 pav. "DBSCAN" klasterizavimas. "eps" verté 0.01, "min_samples" verté 5

23

DBSCAN Clustering with t-SNE Visualization

® Noise
4071 @ Cluster0
O Cluster 1

20 A

t-SNE Dimension 2

t-SNE Dimension 1

3.17 pav. "DBSCAN" klasterizavimas. "eps" verté 0.05, "min_samples" verté 5

Akivaizdu, kad pirmu atveju gaunamas rezultatas (3.16 pav.), kai ,,eps* verté lyg 0.01, o
»min_samples* verte lygi 5, turi Zenkliai per daug klasteriy, esanciy salyginai mazame plote, ir
didzioji dalis objekty (net 2914 objekty) buvo priskirti triuk§mui. Antroje diagramoje (3.17 pav.),
kai ,,eps® verte lyg 0.05, o ,,min_samples* verte lygi 5, matome nemazg kiekj objekty priskirty
triukSmui (317), taciau beveik visi objektai (2670) yra nuspalvinti zaliai, t.y. priskirti klasteriui
,,Cluster 0%, ir beveik néra objekty priskirty ,,Cluster 1 (tik 8 objektai).

Taigi, galime daryti iSvadas, kad “DBSCAN” klasterizavimo algoritmo taikymas Siai
duomeny aibei yra netikslingas. Negauname jokiy rezultaty su visus pozymius turin¢ia duomeny
aibe (visi objektai priklauso vienai aibei), ir gauname jokios naudingos informacijos
neduodancéius rezultatus su duomeny aibe, kurioje yra atrinkti pozymiai - daugiau nei 85% objekty
yra priskirti triuk§mui arba vienai duomeny aibei.

24

3.2.4. Klasterizavimo tikslumas
Palyginus pradinés duomeny aibés klases ir ,,DBSCAN® priskirtas etiketes (,,labels*) galime
palyginti kokia dalis taSky buvo nustatyta teisingai. Rezultaty palyginimui buvo naudotas
optimaliai suklasterizuoti duomenys, kai ,,DBSCAN‘“ parametrai ,.eps” yra lygus 2.6, o
,min_samples* lygus 5.

DBSCAN: eps=2.6, min_samples=5

o
<3

N

Feature 2

® Cluster0
Cluster 1
® Cluster2

Cluster 3

Feature 1

3.18 pav. optimaliai suklasterizuoti naudojantis ,,DBSCAN*

,Cluster 0° atitinka klase 0 (zvaigzdé), ,,Cluster 1” atitinka klas¢ O (galaktika) ir ,,Cluster 2”
atitinka klas¢ 2 (kvazaras), ,,Cluster 3 neatitinka jokios klasés (3.18 pav.).

Atlikus skai¢iavimus buvo rasta, kad ,,DBSCAN‘ neteisingai suklasterizavo 188 objektus, t.y.
~6.26% visy atrinkty objekty buvo priskirta klaidinga klasé. Galima teigti, kad §io algoritmo, kai
jo parametrai ,,eps yra lygus 2.6, o ,,min_samples* kiekis yra lygus 5, tikslumas yra 93.74%.

Siame grafike, matome tagkus, kurie buvo priskirti ne tai klasei (grafike taskai nuspalvinti ta
spalva, kuriai klasei jie turéty priklausyti pagal originaliag duomeny aibg, o ,,DBSCAN* algoritmo
buvo priskirti ne tai klasei).

Galima pastebéti, kad ,,DBSCAN* algoritmas daliai objekty priskyré kitokias etiketes, negu yra
to objekto realios klasés. Viena i§ to priezas¢iy yra ir ne 100% tikslus ,,tSNE* algoritmo — apatiniai
violetiniai taSkai (3.19 pav.), turéty priklausyti klasei 0, taciau ir ,,tSNE* vizualizacijoje, yra
matyti, kad Sie taskai priskirti pirmos klasés grupei. Todél pacio ,,DBSCAN* algoritmo tikslumas
galimai bty didesnis, jei visi taskai biity teisingiau sugrupuoti ,tSNE* algoritmo.

25

Non-coinciding points

30 1
L
20 A
[
10 A s %
[
0 -
~N
7]
5 -10 4
2
m
[7]
w
_20 -
o
—-30 A [] ®
O o
—40
class
[X) e 0
o ® 1
_50 -
-40 =30 =20 -10 0 10 20 30 40

Feature 1

3.19 pav. "DBSCAN" suklasterizuoti objektai, kuriy etiketés nesutampa su objekty klasémis. Objektai
nuspalvinti pagal jy klases.

Coinciding points

40.
20 A
o~
g 0]
2
o
L
uw
—=20 1
class
-40 e 0
e 1
2
—-40 =20 0 20 40

Feature 1

3.20 pav. "DBSCAN" suklasterizuoti objektai, kuriy etiketés sutampa su objekty klasémis. Objektai
nuspalvinti pagal jy klases.

26

Taciau yra matomas didelis ir aiskus objekty grupiy atsiskyrimas ziarint tik j teisingai atskirtus
taSkus zemiau (3.20 pav.)

Klasterizuoty ir neklasterizuoty duomeny aibés, jy apraSomosios statistikas pagal klases ir jas
atitinkancias etiketes (angl. ,,label*) yra labai panasios, nes neatitinkanc¢iy tasky kiekis yra mazas
ir pakankamai pasiskirstes tarp klasiy. Kaip pavyzdj, galime palyginti ,redshift” pozymj
stac¢iakampémis diagramomis (3.21 pav.). Akivaizdu, kad ,,redshift* reik§més ir jy pasiskirstymas
tarp skirtingy klasiy yra beveik toks pat kaip ir tarp skirtingy klasteriy etike¢iy. Vieninteliai du
aiSkiai matomi skirtumai, yra ketvirtos etiketés atsiradimas, taciau jai priklauso tik 15 tasky ir jos
reik§miy vidurkis yra arti visy tasky reik8miy vidurkio. Taip pat klasé 0, po klasterizavimo
nebeteko iSskiréiy (angl. ,,outliers*). Labai panasig informacija gausime ir lyginant kitus aktualius
pozymius (,,z, ,,i, ,,r, ,,g", ,,u).

Redshift by Cluster Label Redshift by Class
1.0 o 10 o
8 8
0.8 o 0.8 o
o o
0.6 § 0.6 g
£ £
£ £
38 3
& &
0.4 0.4 4
(o]
0.2 0.2
_—
0 1 2 3 0 1 !

Cluster Label Class

3.21 pav. staciakampés diagramos lyginancios ,,redshift” reik§miy pasiskirstyma tarp priskirty etikeciy ir
originaliy klasiy.

Taigi, tiksliausiai veikiancio ,,DBSCAN* algoritmo parametrai ,,eps‘ ir ,,min_samples* yra lygiis
atitinkamai 2.6 ir 5. Jis teisingai suklasterizuoja 93.74% visy Sios duomeny aibés objekty. Dalis
Sios aibés objekty (15 objekty) buvo priskirti neegzistuojanciai naujai klasei, like objektai buvo
priskirti klaidingai klasei (173 objektai).

27

3.2.5. Algoritmo jautrumas maziems duomeny aibés pokyc€iams
Stai ¢ia matome ,,t-SNE“ algoritmo pritaikyma ir vizualizacija $iek tiek kitokiems duomenims:
buvo paimti po 1000 atsitiktiniy objekty i§ kiekvienos klasés, tafiau naujo parametro
,random_seed* reik§mé lygi 2 , todél buvo paimti Siek tiek kitokie objektai ir naujai duomeny
aibei pritaikius ,,t-SNE*“ metoda su tokiais pat parametrais (,,perplexity lygi 50, o ,,max_iter*
lygus 750) vizualizacija nezymiai skiriasi (3.22 pav.).

t-SNE

40 -

20 A

t-SNE Dimensija 2

=20
<3
e Galaktika (0)
o Kvazaras (1)
=1 ® Zvaigzde (2)

—"10 —50 0 2'0 410

t-SNE Dimensija 1

3.22 pav. "t-SNE" metodo taikymas atsitiktinai atrinktiems duomenims, kai "random_seed" reikSmé yra
lygi 2.

Palyginus naujos ir buvusios duomeny aibiy klasterizavima ,,DBSCAN* algoritmu su salyginai

geriausiais parametrais (iSrinkus i§ poskyryje ,,3.1.2” vaizduoty grafiky optimalaus grafiko

parametrus), pries tai pritaikius ,,t-SNE* dimensijy maZinimo metoda, matome didelius skirtumus

grafikuose (3.23 pav. ir 3.24 pav.)

28

DBSCAN: eps=2.6, min_samples=5

Feature 2

® Clustero
® Clusterl
Cluster 2

Feature 1

3.23 pav. "DBSCAN" klasterizavimas atsitiktinai atrinktiems duomenims, kai "random_seed" reik§mé
lygi 2. "eps" verté 2.6, "min_samples" verté 5.

DBSCAN: eps=2.6, min_samples=5

B :ﬁ. +

Feature 2

® Cluster0
Cluster 1
® Cluster2

Cluster 3

Feature 1

3.24 pav. "DBSCAN" klasterizavimas atsitiktinai atrinktiems duomenims, kai "random_seed" reikSmeé
lygi 42. "eps" verté 2.6, "min_samples" verté 5.

29

Naudojant tuos pacius parametrus panaSiai duomeny aibei, galime gauti labai skirtingus
rezultatus. Siuo atveju, visus tagkus, priklausanéius 0 ir 1 klaséms, atitinkangius klasterius sujungé
1 vieng klasteri, o dalj 2 klas¢ atitinkancio klasterio tasky priskyré naujam klasteriui. Viso
klaidingai priskirta 1194 objektai. Siame pavyzdyje labai aiSkiai galime pamatyti, kad
,DBSCAN* algoritmas objektus jungia j klasterius pagal jy tarpusavio tankj ir nezymus pokytis
tarp objekty atstumy, $iuo atveju sumazino tikslumg nuo 94.3% iki vos 60.2%.

Taigi, galima teigti, kad kiekvienai duomeny aibei gali tekti ieSkoti ir taikyti naujus ,,DBSCAN*
parametrus, net jei i§ pirmo zvilgsnio duomeny aibiy apraSomoji statistika yra panasi, abi aibés
turi po tiek pat objekty ir jy vizualizacijos atrodo panasiai.

3.2.6. ISvados
Nustatant Siuos parametrus buvo pastebéta, kad didéjancios ,,eps‘ reikSmés mazina klasteriy

kieki, nes vis daugiau tasky priskiria tam paciam klasteriui, o did¢jancios ,,min_samples*
reikSmés didina klasteriy kiekj.

Taip pat buvo pastebéta, kad nezymus pokytis objekty aibéje lemia truputi kitokj tasky
pasiskirstymg panaudojus dimensijos mazinimo metoda, ir dél didesnio mazo kiekio tasky tankio
,DBSCAN®“ algoritmas su tais paciais parametrais veikia stebétinai pras€iau - Visiskai
nebeatskiria tasky priklausanc¢iy dviem klasém.

Geriausias ,,DBSCAN®“ grafikas, kuris optimaliai priskiria objektus klasteriam yra
pritaikytas sumazintos dimensijos ,,t-SNE* metodo pagalba duomenim. Siuo atveju parametrai
,»eps® yra lygus 2.6, ,,min_samples® yra lygus 5 ir algoritmas teisingai suklasterizavo 93.4%
objekty.

30

4. ISVADOS

Atlikus klasterizavimo analize¢ naudojant ,,kMeans* ir ,, DBSCAN‘ metodus, jvertinta, kad
kiekvienas algoritmas turi savo privalumy ir trilkumy, priklausomai nuo duomeny struktiiros ir
pasirinkty parametry. Naudojant ,,kMeans®, optimalus klasteriy skai¢ius buvo nustatytas kaip 3,
o geriausi rezultatai pasiekti su parametrais ,,n_clusters® = 3 ir ,,init“ = , k-means++*“. Duomeny

normalizavimas ir i$skiréiy pasalinimas Zenkliai pagerino klasteriy atskyrimg ir buvo pasiektas
91.87% tikslumas.

Naudojant ,,DBSCAN* algoritmg, buvo nustatyta, kad parametry ,,eps* ir ,,min_samples*
reik§mes stipriai veikia klasteriy susidaryma: didesnés ,,eps‘ reik§més sumazina klasteriy skaiciy,
o didesnés ,,min_samples* reikSmés jj padidina. ISanalizuota, kad algoritmas veiké geriausiai, kai
buvo pritaikytas ,,t-SNE*“ metodu sumazintiems duomenims, ir su optimaliais parametrais ,,eps‘
=2.6, ,,min_samples* = 5 buvo pasiektas 93.4% tikslumas. Taciau pastebéta, kad mazas duomeny
pokytis ar nedideli tasky tankio skirtumai gali reikSmingai paveikti klasterizacijos rezultatus, tai
rodo klasteriy nestabilumg. Taciau visais atvejais ,,DBSCAN® algoritmas sumazintos dimensijos
duomenyse atskyré objektus priklausancius ,,Cluster 2 (4.1 pav.) objekty grupei nuo likusiy
objekty.

Apibendrinant, eksperimenty rezultatai rodo, kad atitaikius parametrus abu algoritmai
pakankamai tiksliai suklastetrizuoja objektus j grupes atitinkancias objekty klases, taciau
,DBSCAN* algoritmas §iai duomeny aibei (4.1 pav.) buvo nezymiai tikslesnis — 93.4%. Taip pat,
nustatytas svyruojantis klasteriy stabilumas — ,,Cluster 2 objekty grupé visada atskiriama taikant
,DBSCAN® metoda, taciau ne visada naudojant ,,kMeans* metoda.

DBSCAN: eps=2.6, min_samples=5

2

.
\.‘cg

4

Feature 2

® Cluster0
Cluster 1
® Cluster2

Cluster 3

Feature 1

4.1 pav. Sumazintos dimensijos, optimaliai suklasterizuoti duomenys naudojantis ,,DBSCAN*

31

SALTINIAI

e https://scikit-learn.org/stable/modules/clustering.html

e https://machinelearningmastery.com/clustering-algorithms-with-python/

e https://scikit-learn.org/stable/modules/generated/sklearn.cluster. DBSCAN.html
e https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.KMeans.html

e https://pandas.pydata.org/docs/

e https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdssl

32

https://scikit-learn.org/stable/modules/clustering.html
https://machinelearningmastery.com/clustering-algorithms-with-python/
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.DBSCAN.html
https://scikit-learn.org/1.5/modules/generated/sklearn.cluster.KMeans.html
https://pandas.pydata.org/docs/
https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss1

KODAS

#!/usr/bin/env python
coding: utf-8

In[1l]:
importing libraries

libraries for file manipulation
import pandas as pd
import numpy as np

libraries for easier visualisation
import matplotlib.pyplot as plt
import matplotlib.colors as mcolors
import seaborn as sns

libraries for dimensionality reduction

import scipy.stats as stats

from sklearn import manifold

from sklearn.decomposition import TruncatedSVD

from sklearn.cluster import KMeans, DBSCAN, HDBSCAN, AgglomerativeClustering
from sklearn.mixture import GaussianMixture

from sklearn.metrics import silhouette score

#from sklearn import metrics

from matplotlib import cm

setting options

pd.set option('display.max columns', None)
pd.set_option('float_format', '{:f}'.format)

In[2]:

importing dataset
df orig = pd.read csv("star classification.csv", delimiter=',")

Preparing data
In[3]:

df orig.drop(columns=['obj ID', 'alpha', 'delta', 'spec obj ID', 'rerun ID', 'MJD'],
inplace=True)

In[4]:

panaikinti ekstremaliy atsiskyréliy viena eilute, kurioje reiksSmés yra -9999
df orig = df origl[(df orig[['u', 'g', 'r', 'i', 'z']] != -9999).all(axis=1)]

encoding labels
df orig.replace(['GALAXY', 'QSO', 'STAR'], [0, 1, 2], inplace=True)

Set a random seed for reproducibility

random seed 42 for DBSCAN reproduction, 2 for kMeans reproduction

random seed = 42

random seed = 2

Sample 1,000 instances per class with a fixed seed

#df = df orig.groupby('class', group keys=False) .apply(lambda x:

x.sample (n=1000)) .reset index (drop=True)

df = df orig.groupby('class', group keys=False) .apply(lambda x: x.sample (n=1000,
random_ state=random seed)) .reset index (drop=True)

kiti masyvai nebuvo normalizuot, nes jie buvo pavadinimai, kampo laipsniai,
kategorijos ar ID
normalization cols = ['redshift', 'u', 'g', 'r', 'i', 'z']

33

normavimas
dfminmax = df.copy()
for col in normalization cols:

#fmin-max normalization
dfminmax[col] = (dfminmax[col] - dfminmax[col].min()) / (dfminmax[col].max () -
dfminmax[col] .min())

In[5]:

dfminmax.columns

In[6]:
feature cols = ['redshift', 'u', 'g', 'r', 'i', 'z']
no class col = ['u', 'g', 'r', 'i', 'z', 'run ID', 'cam col', 'field ID', 'redshift',

'plate', 'fiber ID']
data = dfminmax[feature cols].values
data full = dfminmax[no class col].values

Dimensionallity reduction tSNE
In[7]:

tsne = manifold.TSNE (n_components=2,
perplexity=50,
n_iter=750,
metric="'canberra',
random_ state=42)
data tsne = tsne.fit transform(dfminmax[feature cols].values)

plt.figure(figsize=(10, 8)) # Set the figure size

class labels = ["Galaktika (0)", "Kvazaras (1)", "Zvaigédé (2)"]
class _values = [0, 1, 2]
colors = cm.viridis(np.linspace(0, 1, len(class values)))

for val, label, color in zip(class values, class_ labels, colors):

class _mask = dfminmax['class'] == val

plt.scatter(data tsne[class mask, 0], data tsne[class mask, 1], color=color,
label=label, alpha=0.7)

plt.title ("t-SNE", fontsize=20)

plt.xlabel ('t-SNE Dimensija 1', fontsize=18)
plt.ylabel ('t-SNE Dimensija 2', fontsize=18)
plt.legend(loc="lower right", fontsize=16)

Show the plot
plt.show ()

Clustering
DBSCAN
Defining functions
In[127]:
def dbscan plot one(X, params):
Initialize and fit DBSCAN with the provided parameters
dbscan = DBSCAN (**params)
labels = dbscan.fit predict (X)
Plot the clusters
plt.figure(figsize=(10, 8))

scatter = plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.7)

34

Set title
plt.title (f"DBSCAN: eps={params['eps']}, min samples={params['min samples']}",
fontsize=16)

Add legend if there are fewer than 10 unique labels
unique labels = np.unique (labels)
if len(unique labels) < 10:
labels list = []
for label in unique labels:
if label == -1:
Outliers in grey
labels list.append(plt.scatter([], [], color='grey',6 label='Outlier'))
else:
Use the colormap for cluster labels
color = scatter.cmap (label / (max (unique labels) if max (unique labels)
> 0 else 1))
labels list.append(plt.scatter([], [], color=color, label=f'Cluster
{label} "))

Add legend with labels
plt.legend(handles=labels list, loc='lower right')

Set axis labels and remove ticks

plt.xlabel ('Feature 1")
plt.ylabel ('Feature 2")
plt.xticks ([])
plt.yticks ([])

plt.tight layout ()
plt.show ()

return labels

def dbscan_plot_Zd(X, parameters) :
Create a figure with six subplots arranged vertically
fig, axes = plt.subplots(2, 3, figsize=(20, 12))
axes = axes.flatten()

Loop through each set of parameters and corresponding axis
for ax, params in zip(axes, parameters):
Initialize and fit DBSCAN with the current parameters
dbscan = DBSCAN (**params)
labels = dbscan.fit predict (X)

Plot the clusters
scatter = ax.scatter(
X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.7

Set title

ax.set title(
f"DBSCAN: eps={params|['eps']}, min samples={params['min samples']}",
fontsize=12

Add legends to each subplot if there are fewer than 10 unique labels
unique labels = np.unique (labels)
if len(unique labels) < 10:

I cant create labels for legend globally somewhy, so I need to add to

the list of labels each time seperately
labels list = []
for label in unique labels:
if label == -1:
Outliers in grey

35

labels list.append(ax.scatter([],

label="0Outlier"))

max (unique labels)

else:

(1,

color='"grey',

Use the colormap for cluster labels

color =
> 0 else 1))

labels list.append(ax.scatter([],

{label}'))

def

Add legend with labels

ax.legend (handles=labels list,

scatter.cmap (label /

(max (unique labels) if

(1,

color=color,

loc="'lower right')

Set axis labels and remove ticks

ax.set xlabel ('Feature 1'")
ax.set ylabel ('Feature 2')
ax.set xticks([])
ax.set yticks([])

plt.tight layout ()
plt.show ()

dbscan tsne plot (X, dbscan params=None) :

run DBSCAN
dbscan = DBSCAN (**dbscan params)
labels = dbscan.fit predict (X)

reduce data to 2D using tSNE

tsne = manifold.TSNE (n_components=2,
perplexity=50,
n iter=750,

metric='canberra',

random_state=42)
data tsne = tsne.fit_transform(x)
plot the data
plt.figure(figsize=(12, 8))
Number of clusters in labels,
unique labels = set(labels)
n _clusters = len(unique labels) -

Generate colors for the clusters
colors =

Plot each cluster
for k,
if k

== -1:
Black color for noise
col = [0, 0, 0, 1]
label name = 'Noise'
else:

label name =

f'Cluster {k}'

class_member mask =
Xy =

plt.scatter(

xyl:, 01,
xyl:, 11,
c=[col],

label=label name,
edgecolors='k',
alpha=0.7,

s=50

(labels == k)
data tsne[class member mask]

ignoring noise if present

cm.nipy spectral (np.linspace (0,

col in zip(sorted(unique labels),

36

(-1 label

(1 if -1 in labels else 0)

1, n clusters))

colors) :

label=f'Cluster

)

plt.title ('DBSCAN Clustering with t-SNE Visualization',

plt.xlabel ('t-SNE Dimension 1', fontsize=14)
plt.ylabel ('t-SNE Dimension 2', fontsize=14)
plt.legend(loc='best', fontsize=12)
plt.grid(True)
plt.show ()
return labels

DBSCAN for reduced data

In[128]:

params for tSNE data

dbscan params = [
{'eps': 1.5, 'min samples': 5},
{'eps': 2.6, 'min samples': 5},
{'eps': 3.5, 'min samples': 5}, ## geras
{'eps': 1.5, 'min samples': 10},
{'eps': 2.6, 'min samples': 10},
{'eps': 3.5, 'min samples': 10}

dbscan plot 2d(data tsne, dbscan params)

In[129]:
label list = []
for param in dbscan params:
labels = dbscan plot one(data tsne, param)

label list.append(labels)
In[130]:

for label in label list:
print (np.unique (label))

DBSCAN for not reduced data (cia oof grafikai =xd)

fontsize=16)

In[131]:
labels = dbscan plot one(data tsne, {'eps': 2.1, 'min samples': 5, 'metric':
'cosine'})
In[132]:
dbscan params = {
'eps': 0.01,
'min samples': 5

labels = dbscan tsne plot(data, dbscan params)

In[133]:
dbscan_params = {
'eps': 0.25,

'min_samples': 18

labels2 = dbscan_ tsne plot(data, dbscan params)
In[134]:
np.unique (labels)

37

In[135]:

pd.DataFrame (labels2) .value counts ()

In[]:

In[136]:
dbscan params = {
'eps': 2,
'min_samples': 15
dbscan_tsne plot(data full,

neveikia, reikes parodyt,

dbscan_params)

kad ant data full sitas algo tsg neveikia:D

Evaluating clustering results

In[137]:

#H######## duomenu aibe su atrinktais duomenim ###H#H#H#HFFEH

Finding optimal eps

scores_list = []

Finding optimal eps and min samples

for eps in np.arange(0.001,

0.25, 0.02):

for min sample in np.arange (2, 20, 2):

dbscan

DBSCAN (eps=_eps, min_ samples= min sample)

labels = dbscan.fit predict (data)

Make sure there is more than one cluster

if len(set (labels))

sil score = silhouette score(data,

> 1:
labels)

Save the parameters and scores
scores_list.append ({

'eps': eps,
'min samples': min sample,
'silhouette score': sil score,

})

print ('round done')

scores_df = pd.DataFrame (scores list)

In[138]:

###4# PLOTTING SCORES ####
Plot Silhouette Score
plt.figure(figsize=(12, 6))

scatter = plt.scatter (scores df['eps'],
c=scores_df['silhouette score'],

cmap='viridis"')

colorbar = plt.colorbar (scatter)

colorbar.set label ('Silhouette Score',

plt.xlabel ('eps', fontsize
plt.ylabel ('min samples',

plt.title('Silhouette Score for Different DBSCAN Parameters',

plt.show ()

In[139]:

fontsize=13)
= 14)
fontsize = 14)

38

scores df['min samples'],

fontsize

16)

#H4##444E#E CSNE duomenu aibe ######44#4#
Finding optimal eps

scores list = []

Finding optimal eps and min samples

for

_eps in np.arange(l1.5, 3.25, 0.25):

for min sample in np.arange (2, 20, 2):
dbscan = DBSCAN (eps=_eps, min samples= min sample)
labels = dbscan.fit predict(data tsne)

Make sure there is more than one cluster
if len(set(labels)) > 1:
sil score = silhouette score(data tsne, labels)

Save the parameters and scores
scores_ list.append ({

'eps': eps,
'min samples': min sample,
'silhouette score': sil score,

})

print ('round done')

scores_df = pd.DataFrame (scores list)

In[140]:

scores df

In[141]:

PLOTTING SCORES
Plot Silhouette Score

plt.

figure (figsize=(12, 6))

scatter = plt.scatter(scores df['eps'], scores df['min samples'],
c=scores_df['silhouette score'], cmap='viridis"')

colorbar = plt.colorbar (scatter)

colorbar.set label('Silhouette Score', fontsize=13)

plt.
plt.
plt.
plt.

xlabel ('eps', fontsize = 14)
ylabel ('min samples', fontsize = 14)
title('Silhouette Score for Different DBSCAN Parameters', fontsize = 16)

show ()

In[142]:

FHEHE44HHS NORMAL DATA ####44####
Finding optimal eps

for

_eps in np.arange(0.05, 1.0, 0.05):
_eps = round(_eps, 2)
dbscan = DBSCAN (eps=_eps, min samples=5)

labels = dbscan.fit predict (data)

Calculate the Silhouette Score (ignoring noise points labeled as -1)
if len(set(labels)) > 1: # Make sure there is more than one cluster
score = silhouette score(data, labels)
print (f"DBSCAN with eps={ eps}, min samples=5 - Silhouette Score:

{score:.3f}")

else:
print (£"DBSCAN with eps={ eps}, min samples=5 - 1 cluster detected.")

Finding optimal min sample

for

~min sample in np.arange(2, 50, 10):
dbscan = DBSCAN (eps=0.05, min samples= min sample)
labels = dbscan.fit predict (data)

39

Calculate the Silhouette Score (ignoring noise points labeled as -1)

if len(set(labels)) > 1: # Make sure there is more than one cluster
score = silhouette score(data, labels)
print (f"eps=0.6, min samples={ min sample} - Silhouette Score: {score:.3f}")
else:
print (f"eps=0.05, min samples={ min sample} - 1 cluster detected.")
In[143]:

$H4F 444444 FULL DATA ####44#444
for eps in np.arange (0.1, 10.0, 0.5):
eps = round(_eps, 2)

dbscan = DBSCAN (eps=_eps, min_ samples=100)
labels = dbscan.fit predict(data full)

Calculate the Silhouette Score (ignoring noise points labeled as -1)
if len(set(labels)) > 1: # Make sure there is more than one cluster
score = silhouette score(data full, labels)
print (£"DBSCAN with eps={ eps}, min samples=5 - Silhouette Score:
{score:.3f}")
else:
print (£"DBSCAN with eps={ eps}, min samples=5 - Only one cluster detected,
score not applicable.")

Tried calculating with different min samples (2, 4, 10, 20, 100) and different eps
(from 0.01 to 10.0) and clustering always fails

In[]:

Analysing best plots

In[144]:

dbscan labels = dbscan plot one(data tsne, {'eps': 2.6, 'min samples': 5})
In[145]:

df tsne = pd.DataFrame (data tsne, columns=['featurel', 'feature2'])

df tsne['class'] = dfminmax['class']

df tsne['cluster label'] = dbscan labels

df tsne.value counts('cluster label')

Jeigu reiktu

df tsne.loc[df tsne['cluster label'] == 1, 'cluster label'] = 100

df tsne.loc[df tsne['cluster label'] == 2, 'cluster label'] =1

df tsne.loc[df tsne['cluster label'] == 100, 'cluster label'] = 2

In[l46]:

df tsne different = df tsne[df tsne['class'] != df tsne['cluster label']]

df tsne different.value counts('class')
In[147]:

df tsne different.value counts('cluster label')

In[148]:
df tsne different.value counts('cluster label').sum()
In[149]:
dfminmax['cluster label'] = df tsne['cluster label']

40

dfminmax [dfminmax['cluster label'] == 2].describe()
In[150]:
dfminmax [dfminmax['class'] == 0].describe()

In[]:

In[151]:

df tsne.describe ()

Plot (in)correctly assigned points
In[152]:

df tsne different = df tsne[df tsne['class'] != df tsne['cluster label']]
plt.figure(figsize=(10, 8))

plt.title (f"Non-coinciding points", fontsize=16)

scatter = plt.scatter(df tsne different['featurel'], df tsne different['feature2'],
c=df tsne different['cluster label'], cmap='viridis', s=100, alpha=0.7)

plt.xlabel ('Feature 1")

plt.ylabel ('Feature 2'")

handles, labels = scatter.legend elements ()

plt.legend(handles, labels, loc='lower right', title="Cluster Label")

In[153]:
df orig.head()
In[154]:

df tsne different = df tsne[df tsne['class'] != df tsne['cluster label']]
plt.figure(figsize=(10, 8))

plt.title (f"Non-coinciding points", fontsize=16)

scatter = plt.scatter(df tsne different['featurel'], df tsne different['feature2'],
c=df tsne different['class'], cmap='viridis', s=100, alpha=0.7)

plt.xlabel ('Feature 1")

plt.ylabel ('Feature 2")

handles, labels = scatter.legend elements ()

plt.legend (handles, labels, loc='lower right', title="class", fontsize=12)

In[155]:

df tsne same = df tsne[df tsne['class'] == df tsne['cluster label']]
plt.figure(figsize=(10, 8))

plt.title(f"Coinciding points", fontsize=16)

scatter = plt.scatter(df tsne same['featurel'], df tsne same['feature2'],
c=df tsne same('class'], cmap='viridis', s=100, alpha=0.7)

plt.xlabel ('Feature 1'")

plt.ylabel ('Feature 2'")

handles, labels = scatter.legend elements ()

plt.legend (handles, labels, loc='lower right', title="class", fontsize=12)

In[156]:
dfminmax['cluster label'] = df tsne['cluster label']

In[157]:

41

dfminmax.head ()

In[158]:

dfminmax['incorrect labels'] = dfminmax[dfminmax(['class'] !=
dfminmax['cluster label']].value counts('cluster label')

In[159]:

plt.figure(figsize=(8, 10))
Create boxplots for 'redshift' grouped by 'cluster label' and 'class'
plt.figure(figsize=(14, 6))

Boxplot for 'redshift' by 'cluster label'

plt.subplot(l, 2, 1)

sns.boxplot (x=dfminmax['cluster label'], y=dfminmax['redshift'])
plt.title ("Redshift by Cluster Label")

plt.xlabel ("Cluster Label")

plt.ylabel ("Redshift")

Boxplot for 'redshift' by 'class'

plt.subplot(l, 2, 2)

sns.boxplot (x=dfminmax['class'], y=dfminmax['redshift'])
plt.title ("Redshift by Class")

plt.xlabel ("Class")

plt.ylabel ("Redshift")

plt.tight layout ()

plt.show ()

In[160]:

df outliers = dfminmax[dfminmax['class'] != dfminmax['cluster label']]
In[lol]:

df outliers.loc[df outliers['class'] == 2, 'redshift'].mean(),

df outliers.loc[df outliers['cluster label'] == 2, 'redshift'].mean()

Jei butu daugiau reiksmiu butu belekoks palyginimas cia gautas
In[l62]:

ok cia pas mane nelabai kas yra daryti ig, bet tipo galima pastebeti, kad redshift =
0 arba labai labai maza reiksme

sns.boxplot (x=dfminmax['class'], y=dfminmax['redshift'])

In[163]:

sns.boxplot (x=df outliers['class'], y=df outliers['redshift'])

In[164]:

sns.boxplot (x=df outliers['cluster label'], y=df outliers|['redshift'])
In[l65]:

sns.boxplot (x=dfminmax['class'], y=dfminmax['i'])

In[l1l66]:

sns.boxplot (x=df outliers['class'], y=df outliers['i'])

In[]:

42

In[167]:

normal data analysing

In[l68]:
dbscan params = {
'eps': 0.01,
'min samples': 5
}
labels = dbscan tsne plot(data, dbscan params)
In[169]:
dbscan params = {
'eps': 0.05,
'min_samples': 5,
'leaf size': 25
}
labels2 = dbscan tsne plot(data, dbscan params)
In[170]:
dbscan params = {
'eps': 0.05,
'min samples': 5,
'leaf size': 35
}
labels2 = dbscan tsne plot(data, dbscan params)
In[171]:
df tsne = pd.DataFrame (data tsne, columns=['featurel', 'feature2'])
df tsne['label'] = dfminmax['class']

df tsne['cluster label'] = labels
df tsne.value counts('cluster label')

In[172]:
dfminmax['cluster label'] = df tsne['cluster label']
In[173]:

plt.figure(figsize=(8, 10))
Create boxplots for 'redshift' grouped by 'cluster label' and 'class'
plt.figure(figsize=(14, 6))

Boxplot for 'redshift' by 'cluster label’

plt.subplot(l, 2, 1)

sns.boxplot (x=dfminmax['cluster label'], y=dfminmax['redshift'])
plt.title("Redshift by Cluster Label")

plt.xlabel ("Cluster Label")

plt.ylabel ("Redshift")

Boxplot for 'redshift' by 'class'

plt.subplot(l, 2, 2)

sns.boxplot (x=dfminmax['class'], y=dfminmax['redshift'])
plt.title ("Redshift by Class")

plt.xlabel ("Class")

43

plt.ylabel ("Redshift")

plt.tight layout()
plt.show ()

In[]:

In[]:

KMeans - getting the amounts of clusters with 'elbow', 'silhouette'. Using it on
t-SNE data (WHICH IS BAD).

In[8]:
wcss = [] # List to store WCSS values

Try different numbers of clusters

for n clusters in range(l, 11):
kmeans = KMeans (n clusters=n clusters, random state=42)
kmeans.fit (data tsne)
wcss.append (kmeans.inertia)

Plot the WCSS values
plt.figure(figsize=(8, 5))
plt.plot(range(l, 11), wcss, marker='o')
plt.xlabel ('Klasteriy skaicius')
plt.ylabel ("WCSS"'")

plt.title('Elbow metodas')

plt.show ()

In[9]:
silhouette scores = []

Try different numbers of clusters

for n clusters in range(2, 11): # Silhouette score is not defined for 1 cluster
kmeans = KMeans (n_clusters=n clusters, init='k-means++', max iter=300, tol=0.001,
random state=42)
labels = kmeans.fit predict(data_ tsne)

silhouette scores.append(silhouette score(data tsne, labels))
Plot the Silhouette Scores
plt.figure(figsize=(8, 5))
plt.plot(range(2, 11), silhouette scores, marker='o')
best params - 'n clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol': 0.001
plt.xlabel ('Klasteriy skaicius')
plt.ylabel ('Silhouette reiksSmé')

plt.title('Silhouette metodas"')
plt.show ()

kMeans
Defining functions
In[10]:

def kmeans plot one(X, params):
Initialize and fit KMeans with the provided parameters

44

kmeans = KMeans (**params, random state=42)
labels = kmeans.fit predict (X)

Plot the clusters
plt.figure(figsize=(10, 8))
scatter = plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.7)

Set title
plt.title(f"KMeans: n clusters={params|['n clusters']}, init={params.get('init',

'k-means++"')}", fontsize=18)

Add legend for cluster labels
unique labels = np.unique (labels)
if len(unique labels) < 10: # Add legend only if there are fewer than 10 clusters
labels list = []
for label in unique labels:
Use the colormap for cluster labels
color = scatter.cmap(label / (max(unique labels) if max (unique labels) > 0

else 1))

labels list.append(plt.scatter([], [], color=color, label=f'Cluster

{label}'))

def

Add legend with labels
plt.legend(handles=labels list, loc='lower right', fontsize=14)

Set axis labels and remove ticks
plt.xlabel ('Feature 1', fontsize=18)
plt.ylabel ('Feature 2', fontsize=18)
plt.xticks (fontsize=18)

plt.yticks (fontsize=18)

plt.tight layout ()
plt.show ()

return labels

kmeans_visual comparison (X, param grid):
Create subplots for all parameter combinations

n params = len(param grid)

n rows = (n_params + 2) // 3 # Rows for the grid layout

fig, axes = plt.subplots(n_rows, 3, figsize=(18, 6 * n rows))
axes = axes.flatten()

for i, (ax, params) in enumerate(zip(axes, param grid)):
Run KMeans with the current parameters
kmeans = KMeans (**params, random_state=42)
labels = kmeans.fit predict (X)

Plot the clusters
scatter = ax.scatter(
X[:, 0], X[:, 1], c=labels, cmap='viridis', s=50, alpha=0.7

Add title with parameters

title = (
f"n clusters={params.get('n clusters', 3)} "
f"init={params.get('init', 'k-means++')} "
f"n iter={params.get('n _iter', 300)} "
f"tol={params.get ('tol', le-4)}"

)

ax.set title(title, fontsize=18)

ax.set xticks([])

ax.set yticks([])

Hide unused subplots
for ax in axes[len(param grid):]:

45

def

ax.axis('off'")

plt.tight layout()
plt.show ()

kmeans tsne plot (X, kmeans params=None) :

Run KMeans

kmeans = KMeans (**kmeans params, random_state:42)
labels = kmeans.fit predict (X)

Reduce data to 2D using t-SNE

tsne = manifold.TSNE (n_components=2,
perplexity=50,
n _iter=750,
metric="'canberra',
random_ state=42)

data tsne = tsne.fit transform(X)

Plot the data
plt.figure(figsize=(12, 8))

Number of clusters in labels
n clusters = kmeans params['n clusters']
colors = cm.nipy spectral (np.linspace(0, 1, n clusters))

Plot each cluster
for k, col in zip(range(n clusters), colors):
label name = f'Cluster {k}'

class member mask = (labels == k)
xy = data tsne[class member mask]

plt.scatter(
xyl:, 0],
xyl:, 11,
c=[col],
label=label name,
edgecolors='k',
alpha=0.7,
s=50

plt.title('kMeans klasterizavimas, kai dimensijos mazinamos po kMeans',

fontsize=20)

plt.xlabel ('t-SNE Dimensija 1', fontsize=18)
plt.ylabel ('t-SNE Dimensija 2', fontsize=18)
plt.legend(loc='best', fontsize=14)
plt.grid(True)

plt.xticks (fontsize=14)

plt.yticks (fontsize=14)

plt.show ()

return labels

KMEANS for reduced data

In[11]:

Define parameter combinations for testing
param grid = [

{'n_clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol': le-4},
{'n_clusters': 4, 'init': 'k-means++', 'max iter': 300, 'tol': le-4},
{'n_clusters': 9, 'init': 'k-means++', 'max iter': 300, 'tol': le-4},
n_clusters - 3 best.

{'n_clusters': 3, 'init': 'random', 'max iter': 300, 'tol': le-4},

46

{'n_clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol': le-4},
init method - k-means++ better.

{'n _clusters': 3, 'init': 'k-means++', 'max iter': 10, 'tol': le-4},
{'n clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol': le-4},
{'n clusters': 3, 'init': 'k-means++', 'max iter': 900, 'tol': le-4},
{'n clusters': 3, 'init': 'k-means++', 'max iter': 500, 'tol': le-4},
{'n_clusters': 3, 'init': 'k-means++', 'max iter': 800, 'tol': le-4},
max iter - no change really.
{'n clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol': le-6},
{'n clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol': le-5},
{'n clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol': le-4},
{'n _clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol': 0.001},
{'n _clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol': le-2},
{'n _clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol': le-1},
tol - 0.001 best. Can't seem to get it to be perfect though.
{'n clusters': 3, 'init': 'k-means++', 'max iter': 10, 'tol': 0.0001},
{'n_clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol': 0.0001},
{'n_clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol': 0.1},
1
best params - 'n _clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol': 0.001

Run the comparison
kmeans visual comparison(data tsne, param grid)

KMEANS for NOT reduced data, then after the data gets reduced

In[l2]:

kmeans_tsne plot(data, {'n clusters': 3, 'init': 'k-means++', 'max iter': 300, 'tol':

0.001})

Evaluating clustering results. results are used visually in next steps,
visualising with 'silhouette'.

In[13]:
#H4#4#4 CSNE DATA ######4#444
Parameter search for KMeans

scores_list = []

Finding optimal n clusters and initialization method

for n _clusters in range(2, 20): # Test different numbers of clusters
for init method in ['k-means++', 'random']: # Test different initialization
methods

kmeans = KMeans (n_clusters=n clusters, init=init method, random state=42)
labels = kmeans.fit predict(data) # Run KMeans on the raw data

Ensure there is more than one cluster
if len(set(labels)) > 1:
sil score = silhouette score(data tsne, labels) # Compute silhouette
score on t-SNE data

Save the parameters and scores
scores_list.append ({

'n clusters': n clusters,
'init method': init method,
'silhouette score': sil score,

})

print (f'n_clusters={n_clusters} round done')

47

Convert results into a DataFrame
scores_df = pd.DataFrame (scores list)

Display the top results
print (scores df.sort values(by='silhouette score', ascending=False) .head())

In[l4]:

PLOTTING SCORES
import matplotlib.pyplot as plt
import seaborn as sns

Set up the figure
plt.figure(figsize=(12, 6))

Create a scatter plot of silhouette scores

scatter = plt.scatter(
scores df['n clusters'],
scores_df['silhouette score'],

c=scores_df['init method'].apply(lambda x: 0 if x == 'k-means++' else 1),
cmap='viridis',

s=100,

alpha=0.8,

edgecolor="k'

Add a colorbar for the initialization method
cbar = plt.colorbar (scatter, ticks=[0, 1])
cbar.ax.set yticklabels(['k-means++', 'random'])
cbar.set label('init reikSmé', fontsize=16)

Customize the plot

plt.xlabel ('Klasteriy skaic¢ius (n_clusters)', fontsize=14)

plt.ylabel ('Silueto rodiklis', fontsize=14)

plt.title ('KMEANS klasterizavimas. Silueto rodiklis pagal parametrus', fontsize=16)
plt.grid(True, linestyle='--', alpha=0.6)

Adjust x-axis ticks to include all tested n clusters
plt.xticks (range(scores df['n clusters'].min(), scores df['n clusters'].max() + 1))

Show the plot

plt.tight layout ()

plt.show ()

'Elbow' testing on original data (THE GOOD WAY) .
In[15]:

wcss list = []

Range of cluster numbers to test
n clusters range = range(l, 20) # Adjust as needed

Initialization methods to test
init methods = ['k-means++', 'random']

Perform KMeans clustering and compute WCSS for each combination
for n clusters in n_clusters range:
for init method in init methods:
kmeans = KMeans (n_clusters=n clusters, init=init method, random state=42)
kmeans.fit (data) # Use original data for clustering

Retrieve WCSS (inertia)
wcss = kmeans.inertia

48

Save the parameters and WCSS
wcss_list.append ({

'n clusters': n clusters,
'init method': init method,
'wcss': wcss,

b

print (f'n_clusters={n clusters} round done')

Convert results into a DataFrame
wcss df = pd.DataFrame(wcss_list)

Display the results
print (wcss_df.head())

Optional: Plot WCSS values to visualize the elbow
plt.figure(figsize=(10, 6))

for init method in init methods:
subset = wcss _df[wcss df['init method'] == init method]

plt.plot(subset['n clusters'], subset['wcss'], marker='o', label=f"Init:

{init method}")

plt.xlabel ('Number of Clusters (n clusters)')

plt.ylabel ('"Within-Cluster Sum of Squares (WCSS)')
plt.title ('Elbow Method for Optimal Number of Clusters')
plt.legend()

plt.grid(True, linestyle='--', alpha=0.6)

plt.tight layout ()

plt.figure(figsize=(10, 6))

for init method in init methods:
subset = wcss_df[wcss df['init method'] == init method]

plt.plot(subset['n clusters'], subset['wcss'], marker='o', label=f"Init:

{init method}")

plt.xlabel ('Number of Clusters (n clusters)')

plt.ylabel ('Within-Cluster Sum of Squares (WCSS)')
plt.title ('Elbow Method for Optimal Number of Clusters')
plt.legend()

plt.grid(True, linestyle='--', alpha=0.6)

Add this line to set x-axis ticks to integer cluster numbers
plt.xticks(n_clusters_ range)

plt.tight layout ()
plt.show ()

Analysing best plots

In[l6]:

dbscan_labels = kmeans plot one(data tsne, {'n clusters': 3, 'init':

'max iter': 300, 'tol': 0.001})

In[18]:

df tsne = pd.DataFrame (data tsne, columns=['featurel', 'feature2'])
df tsne['label'] = dfminmax['class']

df tsne['cluster label'] = dbscan labels

In[19]:

df tsne.describe ()

In[20]:

49

'k-means++"',

df tsne different = df tsne[df tsne['label'] != df tsne['cluster label']]

df tsne different.value counts('label')
In[21]:

Apkeiciam cluster label vietomis, kad atitiktu klases

dfitsne.loc[dfitsnef'clusterilabel'] == 1, 'cluster label'] = 100

df tsne.loc[df tsne['cluster label'] == 2, 'cluster label'] =1

df tsne.loc[df tsne['cluster label'] == 100, 'cluster label'] = 2

In[22]:

df tsne different = df tsne[df tsne['label'] != df tsne['cluster label']]

df tsne different.value counts('label')

In[23]:

df tsne different.value counts('cluster label')

In[(22]:

Find the best mapping from cluster label to label

from scipy.optimize import linear sum assignment
from sklearn.metrics import confusion matrix

Create a confusion matrix between true labels and cluster labels

conf matrix = confusion matrix(df tsne['label'], df tsne['cluster label'])

Use Hungarian algorithm to find the optimal label-to-cluster mapping

row_ind, col ind = linear sum assignment (-conf matrix)

Create a mapping dictionary

mapping = {cluster: label for cluster, label in zip(col ind, row_ind)}

Map cluster labels to match the true labels
df tsne['cluster label'] = df tsne['cluster label'].map (mapping)

Recalculate mismatched rows after remapping

df tsne different = df tsne[df tsne['label'] != df tsne['cluster label']]

Display updated mismatch counts
print ("Neatitinak¢iuy klasiuy objektuy skaicius:")
print (df tsne different.value counts('label'))

Plot incorrectly assigned points
In[23]:

import matplotlib.pyplot as plt
import numpy as np

def visualize tsne results(df tsne):
mismatches = df tsne['label'] != df tsne['cluster label']
num mismatches = mismatches.sum/()
total samples = len(df tsne)

percentage mismatched = (num mismatches / total samples) * 100

Scatter plot for true labels
plt.figure(figsize=(18, 6))

plt.subplot(l, 3, 1)

scatter = plt.scatter (df tsne['featurel'], df tsne['feature2'],

c=df tsne['label'], cmap='viridis', s=70, alpha=0.8)

cbar = plt.colorbar (scatter, ticks=np.unique (df tsne['label']))

ticks to unique label values
cbar.set label('Tikslios klasés', fontsize=16)

50

Set colorbar

cbar.ax.tick params (labelsize=14)
plt.title('t-SNE klasteriai',
plt.xlabel ('Dimensija 1', fontsize=16)
plt.ylabel ('Dimensija 2', fontsize=16)
plt.xticks (fontsize=14)
plt.yticks (fontsize=14)

Scatter plot for cluster labels

plt.subplot(l, 3, 2)

scatter =
c=df tsne['cluster label'],

cbar = plt.colorbar (scatter,
colorbar ticks to unique cluster labels

cbar.set label('Klasteriai',

cbar.ax.tick params (labelsize=14)

cmap='viridis',

plt.title('kMeans klaseés', fontsize=18)
plt.xlabel ('Dimensija 1', fontsize=16)
plt.ylabel ('Dimensija 2', fontsize=16)
plt.xticks (fontsize=14)

plt.yticks (fontsize=14)

Scatter plot for mismatches
plt.subplot (1, 3, 3)
plt.scatter(
df tsne.loc[~mismatches,
df tsne.loc[~mismatches,
c='gray',
s=70,
alpha=0.5,
label="Atitinka'
plt.scatter(
df tsne.loc[mismatches,
df tsne.loc[mismatches,
c='red',
s=70,
alpha=0.8,
label="Neatitinka'

'featurel'],
'feature2'],

)
plt.legend(fontsize=14)

fontsize=18)

fontsize=16)

'featurel'],
'feature2'],

plt.scatter (df tsne['featurel'], df tsne['feature2'],
s=70,
ticks=np.unique (df tsne['cluster label']))

alpha=0.8)

plt.title(f't-SNE atitikimas pagal klases\n{percentage mismatched:.2f}%

neatitinka', fontsize=18)
plt.xlabel ('Dimensija 1°',
plt.ylabel ('Dimensija 2',
plt.xticks (fontsize=14)
plt.yticks (fontsize=14)

fontsize=16)
fontsize=16)

plt.
plt.

tight layout ()
show ()

Print the percentage of mismatches

print (f"Percentage of mismatched objects:

In[24]:
visualize tsne results(df tsne)
In[37]:

df tsne.describe ()

In[25]:
dfminmax['cluster label']
In[26]:

51

{percentage mismatched:.2f}%")

= df tsne['cluster label']

Set

dfminmax['incorrect labels'] = dfminmax[dfminmax['class'] !=
dfminmax['cluster label']].value counts('cluster label')

In[27]:

plt.figure(figsize=(8, 10))
Create boxplots for 'redshift' grouped by 'cluster label' and 'class'
plt.figure(figsize=(14, 6))

Boxplot for 'redshift' by 'cluster label'

plt.subplot(l, 2, 1)

sns.boxplot (x=dfminmax['cluster label'], y=dfminmax['redshift'])
plt.title("Redshift by Cluster Label")

plt.xlabel ("Cluster Label")

plt.ylabel ("Redshift")

Boxplot for 'redshift' by 'class'

plt.subplot(l, 2, 2)

sns.boxplot (x=dfminmax['class'], y=dfminmax['redshift'])
plt.title("Redshift by Class")

plt.xlabel ("Class")

plt.ylabel ("Redshift")

plt.tight layout ()

plt.show ()

In[28]:

df outliers = dfminmax[dfminmax['class'] != dfminmax['cluster label']]
df outliers - neatitinakcios klasterizavimo rezultato klases

df outliers.describe()

In[29]:

num class 0 outliers = df outliers[df outliers['class'] == 0].shape[0]
print (f"Neatitinkanc¢iy objektu kiekis 0 klasei: {num class 0 outliers}")
num class 1 outliers = df outliers[df outliers['class'] == 1].shape[0]
print (f"Neatitinkanc¢iy objekty kiekis 1 klasei: {num class 1 outliers}")
num_class 2 outliers = df outliers[df outliers['class'] == 2].shape[0]

print (f"Neatitinkanc¢iy objekty kiekis 2 klasei: {num class 2 outliers}")

In[30]:
df outliers.loc[df outliers['class'] == 2, 'redshift'].mean(),
df outliers.loc[df outliers['cluster label'] == 2, 'redshift'].mean()

nu ir ok, cia tavo padaryta, nu ir gerai, man sito nereikia, nes tik 1 objektas 2
kategorijos blogai kateogiruoztas, nu tai 1lol?

In[31]:

for col in normalization cols:
plt.figure(figsize=(14, 6))

First subplot: Boxplot of the variable by 'class' in dfminmax
plt.subplot(l, 2, 1)

sns.boxplot (x='class', y=col, data=dfminmax)
plt.title(f'{col.capitalize()} reikSmé, t-SNE algoritmas.', fontsize=16)
plt.xlabel ('Klasé', fontsize=14)

plt.ylabel (col.capitalize (), fontsize=14)

plt.xticks (fontsize=12)

plt.yticks (fontsize=12)

Second subplot: Boxplot of the variable by 'class' in df outliers

52

plt.subplot(l, 2, 2)
sns.boxplot (x="class', y=col, data=df outliers)

plt.title(f'{col.capitalize ()} reik3meé, kMeans persidengianc¢iuy objektuy

neatitikimas.', fontsize=16)
plt.xlabel ('klasé', fontsize=14)
plt.ylabel (col.capitalize (), fontsize=14)
plt.xticks (fontsize=12)
plt.yticks (fontsize=12)

Adjust layout and display the plots
plt.tight layout ()
plt.show ()

Comparison of df outliers(mismatching KMeans labels and classes) and dfminmax

In[32]:

for col in normalization cols:
plt.figure(figsize=(14, 6))

First subplot: Boxplot of the variable by 'class'

plt.subplot(l, 2, 1)
sns.boxplot (x='class', y=col, data=dfminmax)

in dfminmax

plt.title(f'{col.capitalize ()} reiksmeé, t-SNE algoritmas.', fontsize=16)

plt.xlabel ('Klasé', fontsize=14)
plt.ylabel (col.capitalize (), fontsize=14)
plt.xticks (fontsize=12)

plt.yticks (fontsize=12)

Second subplot: Boxplot of the variable by 'class' in df outliers

plt.subplot(l, 2, 2)
sns.boxplot (x='class', y=col, data=df outliers)

plt.title(f'{col.capitalize ()} reik3mé, kMeans persidengianciu objektu

neatitikimas.', fontsize=16)
plt.xlabel ('klasé', fontsize=14)
plt.ylabel (col.capitalize (), fontsize=14)
plt.xticks (fontsize=12)
plt.yticks (fontsize=12)

Adjust layout and display the plots
plt.tight layout()
plt.show ()
In[33]:
df tsne = pd.DataFrame(data tsne, columns=['featurel',
df tsne['label'] = dfminmax['class']
df tsne['cluster label'] = labels
df tsne.value counts('cluster label')

In[34]:

dfminmax['cluster label'] = df tsne['cluster label']

53

'feature2'])

