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1. ĮVADAS 

1.1. Darbo tikslas 

Šio darbo tikslas – pritaikant dimensijų mažinimo metodus daugiamačių duomenų 

vizualizavimui, atlikti SDSS (Sloan‘o skaitmeninio dangaus tyrimo DR17) duomenų rinkinio 

analizę, pateikti vizualizavimo rezultatus ir jų interpretaciją. Siekiama ištirti dimensijų 

mažinimo metodų galimybes bei atlikti lyginamąją analizę, kad nustatyti, ar žvaigždžių, 

galaktikų ir kvazarų požymių rinkiniai skiriasi reikšmingai ir turi galimybę būti naudojami šių 

kosminių objektų klasifikavimui. 

1.2. Darbo uždaviniai 

1. Trumpai aprašyti tiriamą duomenų aibę, jos požymius, pagrindines savybes. 

2. Paruošti duomenų aibę jos analizei, ją sunormuoti. 

3. Pritaikyti dimensijų mažinimo metodus su skirtingais argumentais/parametrais. 

4. Vizualizuoti rezultatus. 

5. Apibendrinti rezultatus ir parašyti jų išvadas. 

6. Aprašyti kiekvieno metodo privalumus, trūkumus, juos palyginti. 

1.3. Darbo įrankiai 

Duomenų apdorojimas, transformacija, analizė ir dimensijų mažinimo metodai buvo 

pritaikyti naudojant „Python 3.12.0” programavimo kalbą ir jos bibliotekas (daugiau žiūrėti 

skyrių 6. Kodas).  
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2. DUOMENŲ ANALIZĖ 

2.1. Tiriamos duomenų aibės ir jos požymių aprašymas 

Pateiktoje žvaigždžių klasifikacijos duomenų aibėje („Stellar Classification Dataset“) yra 

100000 eilučių, 18 požymių stulpelių. Jutiklių matavimai yra „float“ tipo (t.y. priklauso realiųjų 

skaičių aibei) , „class“ požymis yra „object“ tipo (t.y. simboliai), likę požymiai yra „int“ tipo 

(t.y. priklauso sveikųjų skaičių aibei). 

 

 

 

Duomenų aibės požymių aprašymai: 

• obj_ID = objekto identifikatorius, unikali dangaus kūno vertė, identifikuojanti 

objektą CAS naudojamame vaizdų kataloge. 

• alpha = dešiniojo pakilimo kampas (pagal J2000 epochą) 

• delta = deklinacijos kampas (pagal J2000 epochą) 

• u = ultravioletinis astrofotometrinės sistemos filtras 

2.1 pav. pradinė duomenų aibė 
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• g = žaliasis astrofotometrinės sistemos filtras 

• r = raudonasis astrofotometrinės sistemos filtras 

• i = artimųjų infraraudonųjų spindulių filtras astrofotometrinė sistemoje 

• z = infraraudonųjų spindulių filtras astrofotometrinė sistemoje 

• run_ID = serijos numeris, naudojamas konkrečiam nuskaitymui identifikuoti 

• rereun_ID = pakartotinio paleidimo numeris, nurodantis, kaip vaizdas buvo 

apdorotas 

• cam_col = kameros stulpelis, skirtas skenavimo linijai nustatyti 

• field_ID = lauko numeris kiekvienam laukui identifikuoti 

• spec_obj_ID = unikalus optinių spektroskopinių objektų ID (tai reiškia, kad 2 

skirtingi stebėjimai su tuo pačiu spec_obj_ID turi turėti bendrą išvesties klasę) 

• class = objekto klasė (galaktika, žvaigždė arba kvazaras) 

• redshift (raudonasis poslinkis) = raudonojo poslinkio vertė, pagrįsta bangos ilgio 

padidėjimu 

• plate = plokštės ID, identifikuojantis kiekvieną SDSS plokštę 

• MJD = modifikuota Julijaus data, naudojama nurodyti, kada buvo paimta tam tikra 

SDSS duomenų dalis 

• fiber_ID = pluošto ID, identifikuojantis pluoštą, kuris nukreipė šviesą į židinio 

plokštumą kiekvieno stebėjimo metu 

 

2.2. Požymių ir objektų apdorojimas 

Pašalinti šie požymiai, nedarantys įtakos kosminio kūno klasifikavimui: 

• „obj_ID“ požymis, nes tai identifikacinis numeris nedarantis įtakos duomenims; 

• „alpha“ ir „delta“ požymiai nusako kosminio objekto poziciją, o jos nėra susijusios su 

skirtingų objektų (galaktikų, žvaigždžių, kvazarų) fizinėmis savybėmis; 

• „spec_obj_ID“ požymis, nes 2 skirtingi stebėjimai su tuo pačiu spec_obj_ID turi turėti 

bendrą išvesties klasę, o visos šio požymio reikšmės yra skirtingos; 

• „rerun_ID“ požymis, nes yra tik viena unikali reikšmė; 

• „MJD“ požymis, nes ji simbolizuoja datą, kada užfiksuotas stebėjimas 

Duomenų aibė neturėjo praleistų reikšmių. Tolimesniems uždaviniams pasirinkome „redshift“, 

„u“, „g“, „r“, „i“ ir „z“ požymius. 

Duomenų aibė turėjo vieną eilutę, kurioje „u“, „g“ ir „z“ reikšmės buvo -9999, tad šią triukšmo 

eilutę panaikinome (2.2 pav.). 

 

„Class“ požymis yra kategorinis požymis, kuris turi tris unikalias reikšmes duomenų aibėje: 

GALAXY – galaktika, QSO – kvazaras(ypač šviesus objektas galaktikos centre), STAR – 

žvaigždė. Kiekviena šių reikšmių buvo pakeista atitinkamai į skaičius 0, 1, 2. 
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2.3 pav. „redshift“ reikšmės pasiskirstymas pagal klases 

Kitų reikšmių atsiskyrėlių nešalinome,  nes jos neturėjo jokių didelių išskirčių - daugumoje jų 

matoma Gauso distribucija (3.2.2. poskyris), išskyrus „redshift“ reikšmėje (2.3 pav.), tačiau ši 

reikšmė rodo šviesos bangų ilgėjimą, todėl jos aukštų reikšmių naikinimas pakenktų analizės 

tikslumui. Taip pat, galima atkreipti dėmesį, kad objektų, priklausančių pirmai klasei 

(kvazarai), „redshift“ požymio reikšmės sąlyginai yra labai aukštos. 

  

  

2.2 pav. Stačiakampė „u“, „g“, „z“ reikšmių diagrama. 
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2.3. Objektų atrinkimas 

Tolimesniam duomenų analizavimui, apdorojimui ir vizualizavimui buvo atsitiktinai atrinkti 

po 1000 objektų iš kiekvienos klasės (2.4 pav.): 

 

2.4 pav. Duomenų aibė su pasirinktais objektais. 

2.4. Duomenų aibės normavimas 

Duomenų normavimui buvo parinkti šie požymiai: „redshift“, „u“, „g“, „r“, „i“ ir „z“. Kiti 

požymiai buvo nenormuoti, nes jie yra arba identifikaciniai („run_ID“, „field_ID“, „cam_col“, 

„plate“, ir „fiber_ID“) arba kategoriniai („class“). Duomenys buvo normuoti naudojant du 

metodus: 

1. Vidurkio ir dispersijos normavimas (2.7 pav.); 

2. Min-max normavimas (2.6 pav.). 

 

2.5 pav. Nenormuotos duomenų aibės statistika. 
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2.6 pav. Min-max metodu normuota duomenų aibės statistika. 

 

2.7 pav. Vidurkio ir dispersijos metodu normuota duomenų aibės statistika. 
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3. DIMENSIJŲ MAŽINIMO METODAI IR VIZUALIZACIJA 

3.1. Principinių komponenčių analizė (PCA) 

3.1.1.  Aprašymas 

PCA („Principal Component Analysis“) yra tiesinis dimensijų mažinimo metodas, 

plačiai naudojamas duomenų analizėje ir vizualizacijoje. Skirtingai nuo netiesinių metodų, 

tokių kaip t-SNE ir UMAP, PCA siekia išlaikyti globalią duomenų struktūrą, sumažindama 

dimensijų skaičių taip, kad išsaugotų kuo daugiau duomenų pasiskirstymo. 

Kadangi PCA yra tiesinis metodas, sumažintų dimensijų ašys turi aiškią interpretaciją 

pagal pradines savybes. Tai leidžia analizuoti, kurie pradinių požymių deriniai labiausiai 

prisideda prie duomenų variacijos ir kaip jie susiję su naujais komponentais. 

PCA metodui pasirinkome „u“, „g“, „r“, „i“, „z“ ir „redshift“ požymius. Toliau 

pateiktuose grafikuose matysime, kaip pirmosios dvi pagrindinės komponentės (PC1 ir PC2) 

atspindi duomenų struktūrą ir kokią variacijos dalį jos paaiškina. 

3.1.2. Analizė 

Kiekvienas taškas grafike atitinka vieną duomenų aibės objektą, o spalvos (raudona, 

žalia ir mėlyna) reprezentuoja skirtingas objektų klases: atitinkamai galaktikas, kvazarus ir 

žvaigždes. Grafike (3.2 pav.) matoma, kad klasės iš dalies persidengia, tačiau galima 

pastabėti objektų reprezentuojančių kvazarų klasę išsiskyrimą. 

 

3.1 pav. “u”, “g”, “r”, “I”, “z”, “redshift” reikšmių įtaka PCA rezultatų ašims. 
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3.2 pav. dimensijų mažinimas PCA metodu. 

 

Kvazarų klasė (3.2 pav. legendoje žalia spalva) daugiausiai išsiskiria Y ašyje dėl „redshift“ 

reikšmės. Nors ji turi gan nedidelę neigiamą įtaką (-0.245721), objektų priklausančių kvazarų 

klasei „redshift“ požymio reikšmės yra didelės, lyginant su kitomis klasėmis (2.3 pav.) - tai 

matoma PC2 ašyje. 

PC1 turi didžiausią apkrovą iš g (0.474751), r (0.460201), u (0.449163) ir i (0.429496) 

požymių (3.1 pav.), o „redshift“ (raudonasis poslinkis) turi mažiausią įtaką (0.095887) šiam 

komponentui. Tai reiškia, kad šie požymiai yra stipriausiai susiję su pagrindine duomenų aibės 

variacija, kurią aprašo PC1. 

PC2 rodo didžiausią teigiamą apkrovą „u“ požymiui (0.743025), tačiau „z“ (-0.452531) 

ir „i“ (-0.349596) požymiai turi didelę neigiamą apkrovą. 
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Pirmoji pagrindinė komponentė (PC1) paaiškina 79.5% visos duomenų aibės variacijos, 

o antroji komponentė (PC2) – papildomus 14.8%. Tai reiškia, kad šie du komponentai bendrai 

paaiškina apie 94.3% visos variacijos, kas yra pakankamai daug, kad būtų galima sumažintą 

duomenų aibės erdvę naudoti vizualizacijai ir tolimesnei analizei. 

3.1.3. PCA išvados 

Skirtingos duomenų klasės—galaktikos, kvazarai ir žvaigždės—iš dalies atsiskiria PCA 

vizualizacijoje. Pirmieji pagrindiniai komponentai, sudaryti iš požymių „z“, „i“, „r“, „g“ ir „u“, 

paaiškina 94,3% duomenų variacijos. Vizualizacijoje pastebėjome objektų grupių 

persidengimą, priklausančių 0 ir 2 klasėms, tačiau objektų, priklausančių 1 klasei, grupė 

atsiskiria pakankamai aiškiai. 

Tačiau, atsižvelgiant į tai, kad „redshift“ požymio pasiskirstymas tarp klasių yra labai 

skirtingas, o PCA metodas jam nesuteikė didelės reikšmės, negalime visiškai pasitikėti vien 

PCA metodo rodomais rezultatais. Tai rodo, kad PCA gali praleisti svarbią informaciją, 

susijusią su „redshift“ požymiu, ir gali būti nepakankamas šių duomenų analizės metodas. 
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3.2. t-SNE metodas 

3.2.1. Aprašymas 

t-SNE („t-Distributed Stochastic Neighbor Embedding“) yra vizualizacijos technika, 

naudojama dimensijų mažinimui. Skirtingai nuo tiesinių metodų, tokių kaip PCA, kurie bando 

išlaikyti globalią struktūrą, t-SNE daugiausia dėmesio skiria lokalių struktūrų išsaugojimui – 

tai reiškia, kad jis stengiasi išlaikyti artimiausius taškus kartu net ir sumažintoje dimensijoje, 

todėl ši technika puikiai tinka grupių atskleidimui duomenyse. 

Kadangi t-SNE yra netiesinis metodas, sumažintų dimensijų ašys neturi aiškios 

interpretacijos pagal pradines savybes. Norint geriau suprasti, kurie pradinių duomenų 

požymiai gali daryti įtaką t-SNE rezultatams, galima atlikti koreliacijos analizę tarp pradinių 

objektų savybių ir t-SNE dimensijų. t-SNE metodui buvo parinkti „u“, „g“, „r“, „i“, „z“, 

„redshift“ požymiai ir jis taikytas normuotiem pagal „min-max“ metodą duomenim (nebent 

nurodyta kitaip). 

Kuriant t-SNE modelius, yra svarbūs du pagrindiniai parametrai: „perplexity“ ir „n_iter“. 

Toliau pateiktuose grafikuose bus matoma, kokią įtaką grafikams daro skirtingos šių parametrų 

reikšmės. 

• „perplexity“ parametras nurodo kiekvieno taško kaimynų skaičių. 

• „n_iter“ parametras nustato iteracijų skaičių, per kurias algoritmas optimizuoja taškų 

padėtis sumažintoje erdvėje.  
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3.2.2. Branduolinių tankių ir koreliacijų grafikai 

Žemiau pateiktas koreliacijų grafikas ir „u“, „g“, „r“, „i“ bei „z“ reikšmių branduolinio 

tankio grafikai padės suprasti 3.2.3 punkte aprašomą dimensijų mažinimą t-SNE metodu. 

 

3.3 pav. Koreliacija tarp „redshift“, „u“, „g“, „r“, „z“ reikšmių ir t-SNE dimensijų. 

Koreliacijų grafikas (3.3 pav.) atvaizduoja t-SNE metodu sumažintų dimensijų grafiko ašių „t-

SNE Dimension 1” ir „t-SNE Dimension 2“ koreliacijas su „redshift“, „u“, „g“, „r“, ‚i“ ir „z“ 

vertėmis. 

Sekantys 5 grafikai atvaizduoja normuotų šviesos spektro duomenų histogramas (3.4 pav. – 3.8 

pav.). Toliau analizuojant t-SNE dimensijų mažinimo metodą remsimės šiais grafikais. 
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3.4 pav. „z“ reikšmės distribucija pagal klasę. 

 

3.5 pav. „r“ reikšmės distribucija pagal klasę. 
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3.6 pav. „i“ reikšmės distribucija pagal klasę. 

 

3.7 pav. „u“ reikšmės distribucija pagal klasę. 

 

3.8 pav. „g“ reikšmės distribucija pagal klasę. 
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3.2.3. t-SNE nenormuotų duomenų grafikas 

 

3.9 pav. t-SNE metodu 5 dimensijų, sumažintų į 2, grafikas. 

Pradiniame t-SNE grafike, kuriame požymiai nebuvo normuoti (3.9 pav.), yra 

matomos dalinai išsiskiriančios struktūros. Labiausiai išsiskiria kvazarai, pagrinde turintys 

aukštas 2 dimensijos ir žemas 1 dimensijos reikšmes. 

Galima pastebėti, kad šiai objektų grupei įtaką daro „redshift“ reikšmė. Tai 

matosi koreliacijų grafike (3.3 pav.) – 1 dimensija su „redshift“ reikšme koreliuoja neigiamai 

(-0.47), o 2 dimensija koreliuoja teigiamai (0.64). Šie skaičiai stipriai paveikia objektų grupės, 

priklausančių kvazarų klasei, poziciją, nes „redshift“ reikšmė šioje kategorijoje yra išsidėsčiusi 

plačiame intervale – didžioji dalis reikšmių yra nuo 0 iki 0.4, o mažytė dalis reikšmių siekia 

0.7 (2.3 pav.). 

Taip pat galima pastebėti platų objektų, priklausančių žvaigždžių klasei (2 

kategorija legendoje), išsidėstymą abiejose dimensijose. Žvelgiant į distribucijų pagal klasę 

grafikus (3.4 pav. – 3.8 pav.) matosi, jog žvaigždžių „u“, „g“, „r“, „i“ ir „z“ spektrai yra 

išsidėstę plačiausiai – [0.3; 1], [0.3, 1], [0.3; 0.8], [0.1; 0.5] ir [0.2; 0.7] intervaluose 

atitinkamai, tai gali paaiškinti tokį platų grupių formavimasi 1 dimensijoje. 

  



 

18 
 

3.2.4. „n_iter“ ir „perplexity“. Normuotų duomenų rezultatai 

Žemiau pateikti grafikai rodo t-SNE algoritmo vizualizacijas su skirtingomis parametro 

„n_iter“ reikšmėmis. Šis parametras rodo atliekamų iteracijų kiekį. Galima pastebėti, kad 

didesnis iteracijų kiekis labiau atskiria objektų grupes. Tai matoma žemiau pateiktuose 

grafikuose – kai „n_iter“ reikšmė lygi 250, grafike (3.10 pav.) matomi didesni atstumai tarp 

objektų ir didesnis objektų grupių persidengimas, kai „n_iter“ reikšmė lygi 750 (3.11 pav.), 

objektų klasės yra labiau grupuotos. Atitinkamai dar didesnė „n_iter“ reikšmė lygi 2250 (3.12 

pav.) objektų klases grupuoja dar labiau, nors skirtumas nebėra toks didelis. Taigi, didesnės 

„n_iter“ parametro reikšmės labiau atskirs objektus į skirtingas grupes. 

 

3.10 pav. Dimensijų mažinimas t-SNE metodu. „n_iter“ reikšmė 250. 
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3.11 pav. Dimensijų mažinimas t-SNE metodu. „n_iter“ reikšmė 750. 

 

3.12 pav. Dimensijų mažinimas t-SNE metodu. „n_iter“ reikšmė 2250. 
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Žemiau pateikti grafikai rodo t-SNE algoritmo vizualizacijas su skirtingomis parametro 

„perplexity“ reikšmėmis. Šis parametras yra itin svarbus t-SNE, nes jis nurodo objektų 

artimiausių kaimynų kiekį, į kurį algoritmas turėtų atsižvelgti, siekiant nustatyti objektų 

panašumus. Mažesnė „perplexity“ reikšmė orientuojasi į lokalią duomenų struktūrą, todėl 

labiau išryškina smulkesnes, vietines objektų grupes (3.13 pav.). Tuo tarpu didesnės 

„perplexity“ reikšmės, lygios 30 (3.14 pav.) ir 90 (3.15 pav.), leidžia algoritmui atsižvelgti į 

platesnį kontekstą, įtraukiant ir tolimesnius taškus. Tokiu būdu gaunama vizualizacija su labiau 

apjungtomis objektų grupėmis, kurios atspindi bendresnį duomenų modelį. 

Taigi, „perplexity“ parametras turi didelę įtaką galutinei vizualizacijai – mažesnės 

reikšmės atsižvelgia į vietines struktūras, o didesnės apjungia atsižvelgia į šiek tiek platesnes 

struktūras. 

 

 

3.13 pav. Dimensijų mažinimas t-SNE metodu. „perplexity“ reikšmė 10. 
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3.14 pav. Dimensijų mažinimas t-SNE metodu. „perplexity“ reikšmė 30. 

 

 

3.15 pav. Dimensijų mažinimas t-SNE metodu. „perplexity“ reikšmė 90. 



 

22 
 

3.2.5. t-SNE Išvados 

Skirtingos duomenų klasės (galaktikos, kvazarai, žvaigždės) atsiskiria t-SNE 

vizualizacijoje. Nors objektų, priklausančių galaktikų ir žvaigždžių klasėms, grupės vietomis 

persidengia, galime gana aiškiai atskirti kvazarų klasės objektų grupę. 

t-SNE parametrų „n_iter“ ir „perplexity“ keitimas daro didelę įtaką vizualizacijos 

rezultatams. Grafikuose matoma, kad didesnė „n_iter“ reikšmė suteikia daugiau iteracijų, 

leidžiančių algoritmui stabiliau optimizuoti taškų pozicijas, kas lemia aiškesnį grupių 

išsidėstymą. „Perplexity“ keitimas leidžia reguliuoti, kiek algoritmas atsižvelgia į vietines 

struktūras (mažesnis „perplexity“) arba šiek tiek platesnes struktūras (didesnis „perplexity“), 

tačiau t-SNE metodas iš esmės yra labiau orientuotas į vietinių struktūrų išryškinimą. 

Geriausiai objektus sugrupuojančio t-SNE metodo parametrai yra, kai „perplexity“ lygus 

90, o kiti parametrai nekeičiami. Tačiau dalis antros ir pirmos klasės grupių persidengia, tad 

nerekomenduojama naudotis vien šiuo metodu. 
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3.3. UMAP metodas 

3.3.1. Aprašymas 

UMAP („Uniform Manifold Approximation and Projection“) yra vizualizacijos technika, 

naudojama dimensijų mažinimui, ypač efektyvi grupių atskleidimui duomenyse. Panašiai kaip 

t-SNE, UMAP yra netiesinis metodas, kuris daugiausia dėmesio skiria lokalių struktūrų 

išsaugojimui. UMAP taip pat atsižvelgia į globalią struktūrą, todėl jis gali išsaugoti daugiau 

informacijos apie bendrą duomenų pasiskirstymą lyginant su t-SNE metodu, tuo pačiu 

efektyviai vizualizacijoje rodant grupes. 

Kadangi UMAP yra netiesinis metodas, norint geriau suprasti, kurie pradinių duomenų 

bruožai gali daryti įtaką UMAP rezultatams, galima atlikti koreliacijos analizę tarp pradinių 

objektų savybių ir UMAP dimensijų. 

Kuriant UMAP modelius išskiriami trys pagrindiniai parametrai: „n_neighbors“, 

„min_dist“ ir „metric“. Toliau pateiktuose grafikuose matysime kokią įtaką grafikui daro 

skirtingos „n_neighbors“, „min_dist“ ir „metric“ reikšmės. 

• „n_neighbors“ parametras nurodo, kiek artimiausių kaimynų yra laikoma kiekvieno 

taško vietinės struktūros apibrėžimui aukštesnėje dimensijoje. 

• „min_dist“ parametras nustato minimalią leistiną atstumą tarp taškų sumažintoje 

dimensijoje. „min_dist“ kontroliuoja, kaip glaudžiai ar laisvai išdėstyti taškai. 

• „metric“ parametras nurodo funkciją, kurią UMAP metodas naudoja skaičiuodamas 

atstumus tarp taškų aukštos dimensijos erdvėje. Tai turi įtakos tam, kaip algoritmas 

supranta taškų panašumus ir formuoja vietinę bei globalią struktūrą. 

UMAP metodas buvo taikytas normuotiem pagal „Z-score“ duomenims ir pasirinkti „u“, „g“, 

„r“, „i“, „z“, „redshift“ požymiai. Grafikai sugrupuoti po tris į tris dalis: kai „min_dist“ 

parametras lygus 0 (3.3.2.), kai „min_dist“ parametras lygus 0,5 (3.3.3.) ir kai „min_dist“ 

parametras lygus 1 (3.3.1.). Kiekvienas iš grafikų su skirtingu „min_dist“ parametru, turi 

„n_neighbors“ parametrą: 5, 15 ir 50. 
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3.3.2. Grafikai, kai „min_dist“ vertė lygi 0 

 

3.16 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 0, n_neighbors vertės keitimas. 

 

3.17 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 0, n_neighbors vertės keitimas. 
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3.18 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 0, n_neighbors vertės keitimas. 

3.3.3. Grafikai, kai „min_dist“ vertė lygi 0.5 

 

3.19 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 0.5, „n_neighbors“ vertės keitimas. 
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3.20 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 0.5, „n_neighbors“ vertės keitimas. 

 

3.21 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 0.5, „n_neighbors“ vertės keitimas. 
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3.3.4. Grafikai, kai „min_dist“ vertė lygi 1 

 

3.22 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 1, n_neighbors vertės 

keitimas. 

 

3.23 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 1, n_neighbors vertės 

keitimas. 
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3.24 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 1, n_neighbors vertės keitimas. 

 

Šiuose grafikuose aiškiai matosi grafikų pokytis keičiantis „n_neighbors“ ir „min_dist“ 

parametrams. 

Ryškiausi „n_neighbors“ parametro pokyčio rezultatai matosi, kai „min_dist“ parametras 

lygus 0 (3.3.2. dalis). Mažesnės „n_neighbors“ vertės (3.16 pav.) orientuojasi į lokalią struktūrą 

ir visus objektus sutraukia į mažesnes grupes. Didesnės „n_neighbors“ vertės (3.17 pav. ir 3.18 

pav.) apima daugiau objektų, daugiau dėmesio skiriama globaliam duomenų struktūros 

vaizdui, išryškinamos platesnės grupės ir globali struktūra. 

Parametro „min_dist“ verčių skirtumus galime matyti visuose poskyriuose (3.3.2, 3.3.3 

ir 3.3.4 poskyriai), atitinkamuose „n_neighbors“ pokyčių grafikuose. Šis parametras 

reguliuoja, kaip glaudžiai yra išsidėstę objektai. Šio parametro įtaką iškarto pastebime tarp 3.16 

pav. ir 3.19 pav. – abiejuose grafikuose parametras n_neighbors išlieka tas pats (lygus nuliui), 

tačiau min_dist vertė pasikeičia iš 0 į 0.5, ir atstumas tarp visų objektų tampa akivaizdžiai 

didesnis. Mažesnė „min_dist“ vertė (3.16 pav.) leidžia taškams sumažintoje dimensijoje būti 

arti vienas kito, todėl susidaro kompaktiškesnės grupės ir atvaizduojama lokali struktūra. 

Didesnė min_dist vertė (3.19 pav.) leidžia taškams būti toliau vienas nuo kito sumažintoje 

dimensijoje, todėl vizualizacijoje matomi didesni tarpai tarp taškų. Tai vėlgi atvaizduoja 

globalesnę struktūrą. 
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3.3.5. Parametras „metric“ 

Grafikas, kuriame yra sąlyginai mažiausiai persidengimų tarp skirtingų klasių, turi 

parametrus – „n_neighbors“ reikšmė lygi 15 ir „min_dist“ reikšmė lygi 1 (3.23 pav.). Toliau 

bus bandoma dar labiau sumažinti grupių pagal klases persidengimą, naudojant metric 

parametrą. 

Parametro „metric“ reikšmė yra atstumo funkcija. Čia buvo naudojamos „euclidean“, 

„manhattan“, „cosine“ ir „correlation“ metrikų reikšmės. 

• „euclidean“ metrika skaičiuoja tiesioginį geometrinį atstumą tarp taškų; 

• „manhattan“ metrika skaičiuoja atstumą pagal „miesto kvartalo“ principą, kur 

atstumai matuojami tik horizontaliai ir vertikaliai; 

„cosine“ metrika vertina kampinį panašumą tarp taškų, orientuojantis į jų vektorių kryptį, o ne 

atstumą tarp jų. Nors ši metrika dažniausiai taikoma analizuojant tekstinius dokumentus, tačiau 

ji taip pat pasitarnavo ir mūsų analizei, padėdama geriau atskirti grupes; 

• „correlation“ metrika matuoja, kiek dvi savybės yra tarpusavyje priklausomos, t.y. 

koreliuoja, o ne kiek jos yra nutolusios viena nuo kitos. Jei savybės didėja ar mažėja 

panašiai, „correlation“ metrika parodys stipresnį panašumą tarp tų taškų, net jei jų 

tikrosios vertės yra skirtingos; 

 

3.25 pav. Dimensijų mažinimas UMAP metodu. „metric“ parametras lygus „euclidean“. 
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3.26 pav. Dimensijų mažinimas UMAP metodu. „metric“ parametras lygus „manhattan“. 

 

3.27 pav. Dimensijų mažinimas UMAP metodu. „metric“ parametras lygus „cosine“. 
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3.28 pav. Dimensijų mažinimas UMAP metodu. „metric“ parametras lygus „correlation“. 

  

Galime aiškiai pastebėti, kad grafikuose, kai atstumai skaičiuojami naudojant 

„correlation“ ir „cosine“ metrikas, objektų grupės tsiskiria daug labiau negu naudojant 

numatytąją „euclidean“ metriką. Požymių įtaką galime daugmaž įvertinti atlikus koreliacijos 

analizę tarp pradinių objektų savybių ir UMAP dimensijų. Verta atkreipti dėmesį, kad 

kiekvieną kartą skaičiuojant koreliacijas gausime šiek tiek skirtingus rezultatus, tačiau galime 

pastebėti bendras tendencijas. 

 

Pirmame grafike (3.29 pav.) matome UMAP modelio koreliacijas, kai parametro 

„n_neighbor“ reikšmė lygi 15, „min_dist“ reikšmė lygi 1 ir „metric“ reikšmė lygi „euclidean“, 

o antrame grafike (3.30 pav.) koreliacijas, kai „n_neighbor“ ir „min_dist“ reikšmės tokios 

pačios, tik „metric“ skiriasi – ji lygi „cosine“. Matoma, kad aktualiausi parametrai naudojant 

„euclidean“ metriką yra „r“, „i“ ir „z“ (vertės tiek UMAP 1, tiek UMAP 2 ašyje koreliuoja 

neigiamai, apie -0.5). O naudojant „cosine“ metriką aktualiausi parametrai yra „i“, „z“ ir 

„redshift“, kuria teigiamai koreliuoja UMAP 1 ašyje apie 0.5, ir neigiamai koreliuojantys 

UMAP 2 ašyje (apie -0.5) “u”, „g“ ir „redshift“. 
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3.29 pav. UMAP gauto grafiko „euclidean“ metrika ašių ir „redshift“, „u“, „g“, „r“, „i“, „z“ reikšmių 

koreliacijos. 

 

3.30 pav. UMAP gauto grafiko „cosine“ metrika ašių ir „redshift“, „u“, „g“, „r“, „i“, „z“ reikšmių 

koreliacijos. 
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3.3.6. UMAP Išvados 

Skirtingos duomenų klasės – galaktikos, kvazarai ir žvaigždės – aiškiausiai atsiskiria 

UMAP vizualizacijoje kai yra šios parametrų reikšmės: „n_neighbor“ reikšmė lygi 15, 

„min_dist“ reikšmė lygi 1 ir „metric“ reikšmė lygi „cosine“ arba „correlation“. 

UMAP metodas yra veiksmingas dimensijų mažinimo metodas, kurį galime pritaikyti 

keičiant „n_neighbors“, „min_dist“ ir „metric“ parametrus.  UMAP metodo vizualizacijos 

rezultatuose matoma, kad didesnės parametrų „n_neighbors“ ir „min_dist“ reikšmės lemia 

grafiką su didesniais atstumais tarp taškų – mažiau atskirtos objektų grupės, o mažesnės 

reikšmės išryškina vietines struktūras. Be to, „metric“ parametro pasirinkimas nusako metriką, 

kurią UMAP naudoja skaičiuojant atstumus tarp objektų, o tai daro įtaką objektų grupavimuisi. 

Metrika „cosine“ yra naudingesnė analizuojant duomenis, kuriuose svarbu išlaikyti savybių 

proporcinius santykius ir priklausomumus, o ne absoliučius dydžius. Tai buvo pastebėta ir 

tankio grafikuose (3.4 pav. – 3.8 pav.), kur „z“, „i“, „r“, „g“, „u“ požymių tankio pasiskirstymas 

tarp klasių buvo panašus, t. y. jų proporciniai santykiai buvo panašūs. 

 

4. IŠVADOS 

Atliekant duomenų analizę naudojant PCA, t-SNE ir UMAP metodus, pastebėjome, kad 

kiekvienas iš jų turi savo stipriąsias ir silpnąsias puses. PCA metodas efektyviai sumažina 

dimensijų skaičių ir paaiškina didelę duomenų dispersiją, tačiau gali praleisti svarbius 

požymius, tokius kaip „redshift“, kurie nėra gerai atspindėti pagrindinėse komponentėse. 

t-SNE ir UMAP metodai geriau išryškina duomenų struktūrą ir grupes, leidžiančias 

aiškiau atskirti skirtingas klases – galaktikas, kvazarus ir žvaigždes. Tačiau šių UMAP ir t-

SNE dimensijų reikšmės neturi konkrečios prasmės, todėl sunku interpretuoti kaip konkretūs 

požymiai įtakoja galutinę struktūrą. Jų rezultatai stipriai priklauso nuo metodų parametrų, tokių 

kaip „perplexity“ ir „n_iter“ (t-SNE), bei „n_neighbors“, „min_dist“ ir „metric“ (UMAP). „t-

SNE“ metodas prastai išlaiko globalią struktūrą, todėl jį naudingiau taikyti ieškant lokalių 

struktūrų. Mūsų atveju, informatyviausias metodas, kuriame aiškiausiai atskiriamos grupės yra 

UMAP su parametrais „n_neighbor“ reikšmė lygi 15, „min_dist“ reikšmė lygi 1 ir „metric“ 

reikšmė lygi „cosine“ arba „correlation“. PCA metodo naudoti nerekomenduojama su šia 

duomenų aibe. 

Apibendrinant, norint efektyviai analizuoti aukštos dimensijos duomenis ir aptikti bei 

atvaizduoti atsiskiriančias grupes, verta naudoti kelis dimensijų mažinimo metodus. Tai leidžia 

gauti išsamesnį supratimą apie duomenų struktūrą ir užtikrina, kad svarbi informacija nebūtų 

prarasta dėl konkretaus metodo apribojimų. Be to, parametrų ir metrikų pasirinkimas turi būti 

kruopščiai apsvarstytas, siekiant išlaikyti svarbias savybių proporcijas ir priklausomybes 

duomenyse. 
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5. ŠALTINIAI 

• https://umap-learn.readthedocs.io/en/latest/parameters.html 

• https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-

techniques-python/ 

• https://pandas.pydata.org/docs/ 

• https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17
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6. KODAS 

import pandas as pd 

import numpy as np 

 

# libraries for easier visualisation 

import matplotlib.pyplot as plt 

import matplotlib.colors as mcolors 

import seaborn as sns 

 

# libraries for dimensionality reduction 

import scipy.stats as stats 

from sklearn import manifold 

from sklearn.decomposition import PCA 

from sklearn.decomposition import TruncatedSVD 

import umap 

 

# setting options 

pd.set_option('display.max_columns', None) 

pd.set_option('float_format', '{:f}'.format) 

 

df_orig = pd.read_csv("star_classification.csv", delimiter=',') 

 

df_orig.info() 

 

df_orig.describe() 

 

df_orig.isna().sum().sum() 

 

df_orig[df_orig['plate'].duplicated()] 

 

df_orig['run_ID'].nunique() 

 

df_orig['rerun_ID'].nunique() 

 

# ## Data Cleaning 

 

# ### Removing not needed columns 

 

df_orig.drop(columns=['obj_ID', 'alpha', 'delta', 'spec_obj_ID', 'rerun_ID', 'MJD'], 

inplace=True) 

 

# ### Outlier Removing 

 

# IQR nustatyti atsiskyrėlių ribas 

def detect_outliers_iqr(data): 

    Q1 = data.quantile(0.25) 

    Q3 = data.quantile(0.75) 

    IQR = Q3 - Q1 

    lower_bound = Q1 - 1.5 * IQR 

    upper_bound = Q3 + 1.5 * IQR 

    outliers = (data < lower_bound) | (data > upper_bound) 

    return outliers, lower_bound, upper_bound 

 

iqr_outliers, lower_bound, upper_bound = detect_outliers_iqr(df_orig[['u', 'g', 'r', 

'i', 'z']]) 

 

for column in df_orig[['u', 'g', 'r', 'i', 'z']].columns: 

    print(f"IQR lower bound for '{column}': {lower_bound[column]:.2f}") 

    print(f"IQR upper bound for '{column}': {upper_bound[column]:.2f}") 

     

    print("\n") 

 

# panaikinti ekstremalių atsiskyrėlių vieną eilutę, kurioje reikšmės yra -9999 

df_orig = df_orig[(df_orig[['u', 'g', 'r', 'i', 'z']] != -9999).all(axis=1)] 
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df_orig.describe() 

 

# ### Encoding labels 

 

df_orig.replace(['GALAXY', 'QSO', 'STAR'], [0, 1, 2], inplace=True) 

 

# ### Choosing random 1000 objects from each class 

 

df = df_orig.groupby('class', group_keys=False).apply(lambda x: 

x.sample(n=1000)).reset_index(drop=True) 

 

# ### Normalization 

 

# kiti masyvai nebuvo normalizuoti, nes jie buvo pavadinimai, kampo laipsniai, 

kategorijos ar ID 

normalization_cols = ['redshift', 'u', 'g', 'r', 'i', 'z'] 

 

dfn = df.copy() 

dfminmax = df.copy() 

for col in normalization_cols: 

    dfn[col] = (dfn[col] - dfn[col].mean()) / dfn[col].std() 

    #min-max normalization 

    dfminmax[col] = (dfminmax[col] - dfminmax[col].min()) / (dfminmax[col].max() - 

dfminmax[col].min()) 

 

 

df.describe() 

 

dfn.describe() 

 

dfminmax.describe() 

 

# ## Visualisation 

 

# ### PCA 

 

feature_cols = ['u', 'g', 'r', 'i', 'z', 'redshift'] 

pca = PCA(n_components=2) 

pca_result = pca.fit_transform(df[feature_cols].values) 

pca_df = pd.DataFrame(data = pca_result, columns = ['principal component 1', 

'principal component 2']) 

 

# Explained variability per principal component 

print(pca.explained_variance_ratio_) 

 

plt.figure() 

plt.figure(figsize=(7,7)) 

plt.xticks(fontsize=12) 

plt.yticks(fontsize=12) 

plt.xlabel('PC 1', fontsize=13) 

plt.ylabel('PC 2', fontsize=13)  

plt.title("Principinių komponenčių analizė", fontsize=15) 

targets = [0, 1, 2] 

colors = ['r', 'g', 'b'] 

for target, color in zip(targets,colors): 

    indicesToKeep = df['class'] == target 

    plt.scatter(pca_df.loc[indicesToKeep, 'principal component 1'] 

               , pca_df.loc[indicesToKeep, 'principal component 2'], c = color, s = 

15) 

 

plt.legend(targets,prop={'size': 15}) #  

 

# Fit PCA 

pca.fit(df[feature_cols]) 

# create df for showing loadings 
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loadings_df = pd.DataFrame(pca.components_, columns=feature_cols, index=['PC1', 

'PC2']) 

loadings_df 

 

 

# ### TSNE 

 

 

import matplotlib.pyplot as plt 

from sklearn import manifold 

import pandas as pd 

 

n_iter = 250 

 

fig, ax = plt.subplots(1, 1, figsize=(8, 6), constrained_layout=True) 

 

class_labels = ["Galaktika (0)", "Kvazaras (1)", "Žvaigždė (2)"] 

 

tsne = manifold.TSNE(n_components=2, n_iter=n_iter, random_state=42) 

tsne_data = tsne.fit_transform(df[feature_cols].values) 

 

for class_value, label in zip([0, 1, 2], class_labels): 

    class_mask = pd.factorize(df['class'])[0] == class_value 

    ax.scatter(tsne_data[class_mask, 0], tsne_data[class_mask, 1], label=label, 

alpha=0.7) 

 

ax.set_title("t-SNE", fontsize=20) 

ax.set_xlabel('t-SNE Dimensija 1', fontsize=18) 

ax.set_ylabel('t-SNE Dimensija 2', fontsize=18) 

ax.legend(loc="upper right", fontsize=16) 

 

# Show the plot 

plt.show() 

 

 

df['t-SNE Dimension 1'] = tsne_data[:, 0] 

df['t-SNE Dimension 2'] = tsne_data[:, 1] 

 

correlation_matrix = df[['u', 'g', 'r', 'i', 'z', 'redshift', 't-SNE Dimension 1', 't-

SNE Dimension 2']].corr() 

 

correlation_with_tsne = correlation_matrix[['t-SNE Dimension 1', 't-SNE Dimension 

2']].iloc[:-2] 

 

plt.figure(figsize=(8, 6)) 

sns.heatmap(correlation_with_tsne, annot=True, cmap="coolwarm", vmin=-1, vmax=1) 

plt.title("Koreliacija tarp reikšmių ir t-SNE dimensijų", fontsize=20) 

plt.xlabel("t-SNE Dimensijos", fontsize=18) 

plt.ylabel("Reikšmės", fontsize=18) 

plt.show() 

 

# ##### n_iter increase 

 

 

initial_n_iter = 250 

doublings = 2 

 

fig, axes = plt.subplots(doublings + 1, 1, figsize=(8, 6 * (doublings + 1)), 

constrained_layout=True) 

 

class_labels = ["Galaktika (0)", "Kvazaras (1)", "Žvaigždė (2)"] 

colors = plt.cm.viridis([0.2, 0.5, 0.8]) 

 

for i in range(doublings + 1): 

    n_iter = initial_n_iter * (3 ** i) 

    tsne = manifold.TSNE(n_components=2, n_iter=n_iter, random_state=42) 
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    tsne_data = tsne.fit_transform(df[feature_cols].values) 

    ax = axes[i] if doublings > 0 else axes 

     

    for class_value, color, label in zip([0, 1, 2], colors, class_labels): 

        class_mask = pd.factorize(df['class'])[0] == class_value 

        ax.scatter(tsne_data[class_mask, 0], tsne_data[class_mask, 1], color=color, 

label=label, alpha=0.7) 

     

    ax.set_title(f"t-SNE su n_iter={n_iter}", fontsize=20) 

    ax.set_xlabel('t-SNE Dimensija 1', fontsize=18) 

    ax.set_ylabel('t-SNE Dimensija 2', fontsize=18) 

    ax.legend(loc="upper right") 

 

plt.show() 

 

# ##### perplexity increase 

 

initial_perp = 10 

doublings = 2 

 

fig, axes = plt.subplots(doublings + 1, 1, figsize=(8, 6 * (doublings + 1)), 

constrained_layout=True) 

 

class_labels = ["Galaktika (0)", "Kvazaras (1)", "Žvaigždė (2)"] 

colors = plt.cm.viridis([0.2, 0.5, 0.8]) 

 

for i in range(doublings + 1): 

    perp = initial_perp * (3 ** i) 

    tsne = manifold.TSNE(n_components=2, n_iter=250, perplexity=perp, random_state=42) 

    tsne_data = tsne.fit_transform(df[feature_cols].values) 

    ax = axes[i] if doublings > 0 else axes 

     

    for class_value, color, label in zip([0, 1, 2], colors, class_labels): 

        class_mask = pd.factorize(df['class'])[0] == class_value 

        ax.scatter(tsne_data[class_mask, 0], tsne_data[class_mask, 1], color=color, 

label=label, alpha=0.7) 

     

    ax.set_title(f"t-SNE su perplexity={perp}", fontsize=20) 

    ax.set_xlabel('t-SNE Dimensija 1', fontsize=18) 

    ax.set_ylabel('t-SNE Dimensija 2', fontsize=18) 

    ax.legend(loc="upper right") 

 

plt.show() 

 

# ### UMAP 

 

feature_cols = ['u', 'g', 'r', 'i', 'z', 'redshift'] 

def draw_umap(n_neighbors=15, min_dist=0.1, n_components=2, metric='euclidean', 

title='', data=df): 

    fit = umap.UMAP( 

        n_neighbors=n_neighbors, 

        min_dist=min_dist, 

        n_components=n_components, 

        metric=metric 

    ) 

    u = fit.fit_transform(df[feature_cols]) 

     

    colors = ['r', 'g', 'b'] 

    class_labels = ['GALAKTIKA', 'KVAZARAS', 'ŽVAIGŽDĖ'] 

    cmap = mcolors.ListedColormap(colors) 

 

    fig, ax = plt.subplots(figsize=(10, 7)) 

    scatter = ax.scatter(u[:, 0], u[:, 1], c=data['class'], cmap=cmap, s=15) 

    plt.title(title, fontsize=16) 

 

    plt.xlabel('UMAP 1', fontsize=14) 
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    plt.ylabel('UMAP 2', fontsize=14) 

     

    legend_handles = [plt.Line2D([0], [0], marker='o', color='w', 

markerfacecolor=colors[i], markersize=10)  

                      for i in range(len(class_labels))] 

    plt.legend(legend_handles, [f"({i}) {label}" for i, label in 

enumerate(class_labels)], title="Klasės") 

     

    plt.show() 

 

for x in (df, dfminmax, dfn): 

    for n in (15, 50, 200): 

        draw_umap(n_neighbors=n, metric='manhattan', title='n_neighbors = 

{}'.format(n), data=x) 

 

# for each of min distances 0, 0.5 and 1 take n_neighbors 5, 15 and 50 and draw umap 

graphs 

for d in (0.0, 0.5, 1): 

    for n in (5, 15, 50): 

        draw_umap(n_neighbors=n, min_dist=d, title='n_neighbors = {}, min_dist = 

{}'.format(n, d), data=dfn) 

 

for metric_s in ('manhattan', 'euclidean', 'cosine', 'correlation'): 

    draw_umap(n_neighbors=15, min_dist=1, metric=metric_s, title='metric = {} 

n_neighbors = 15, min_dist = 1'.format(metric_s), data=dfn) 

 

# Define UMAP model and get the embeddings 

umap_model = umap.UMAP(n_neighbors=15, min_dist=1, n_components=2, metric='cosine') 

umap_embedding = umap_model.fit_transform(df[feature_cols]) 

 

# DataFrame for the UMAP results and feature columns 

umap_df = pd.DataFrame(umap_embedding, columns=['UMAP1', 'UMAP2']) 

features_df = df[feature_cols] 

 

# Correlations between each feature and the UMAP axes 

correlations = features_df.corrwith(umap_df['UMAP1']).to_frame(name='UMAP1') 

correlations['UMAP2'] = features_df.corrwith(umap_df['UMAP2']) 

 

print("n_neighbors=15, min_dist=1, metric=cosine") 

sns.heatmap(correlations, annot=True, cmap="coolwarm") 

 

# Define UMAP model and get the embeddings 

umap_model = umap.UMAP(n_neighbors=5, min_dist=1, n_components=2, metric='euclidean') 

umap_embedding = umap_model.fit_transform(df[feature_cols]) 

 

# DataFrame for the UMAP results and feature columns 

umap_df = pd.DataFrame(umap_embedding, columns=['UMAP1', 'UMAP2']) 

features_df = df[feature_cols] 

 

# Correlations between each feature and the UMAP axes 

correlations = features_df.corrwith(umap_df['UMAP1']).to_frame(name='UMAP1') 

correlations['UMAP2'] = features_df.corrwith(umap_df['UMAP2']) 

 

print("n_neighbors=15, min_dist=1, metric=euclidean") 

sns.heatmap(correlations, annot=True, cmap="coolwarm") 

 

# ### histograms, box plots 

 

plt.figure(figsize=(12, 6)) 

sns.histplot(data=dfminmax, x='redshift', hue='class', bins=30, kde=True, 

palette='viridis') 

plt.title("Redshift distribucija pagal klasę", fontsize=16) 

plt.xlabel("Redshift", fontsize=16) 

plt.ylabel("Dažnis", fontsize=16) 

plt.legend(title="Klasė", labels=["Galaktika (0)", "Kvazaras (1)", "Žvaigždė (2)"], 

fontsize=20) 
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plt.show() 

 

features = ['u', 'g', 'r', 'i', 'z'] 

 

n_rows = len(features) 

fig, axes = plt.subplots(n_rows, 1, figsize=(12, 6 * n_rows), constrained_layout=True) 

 

for i, feature in enumerate(features): 

    sns.kdeplot(data=dfminmax, x=feature, hue='class', palette='viridis', ax=axes[i], 

fill=False, linewidth=2.5) 

    axes[i].set_title(f"{feature} distribucija pagal klasę", fontsize=16) 

    axes[i].set_xlabel(feature, fontsize=16) 

    axes[i].set_ylabel("Tankis", fontsize=16) 

    axes[i].legend(title="Klasė", labels=["Galaktika (0)", "Kvazaras (1)", "Žvaigždė 

(2)"], fontsize=12, title_fontsize=14, loc="upper right") 

 

plt.show() 

 

plt.figure(figsize=(10, 6)) 

sns.boxplot(data=df_orig[['u', 'g', 'z', 'r', 'i', 'redshift']], color='skyblue') 

plt.title("Stačiakampė diagrama, pabrėžianti 'u', 'g', ir 'z' atsiskyrėlius") 

plt.ylabel("Reikšmė") 

plt.show() 

 

# Create a separate figure for histograms 

fig, axs = plt.subplots(2, 3, figsize=(15, 10)) 

 

# List of columns to plot histograms for 

columns = ['u', 'g', 'z', 'r', 'i', 'redshift'] 

 

# Generate histograms for each column 

for i, col in enumerate(columns): 

    sns.histplot(df_orig[col], bins=30, ax=axs[i//3, i%3], kde=True, color='skyblue') 

    axs[i//3, i%3].set_title(f"'{col}' histograma", fontsize=20) 

    axs[i//3, i%3].set_xlabel("Reikšmė", fontsize=18) 

    axs[i//3, i%3].set_ylabel("Dažnis", fontsize=18) 

 

plt.tight_layout() 

plt.show() 

 

max_redshift_per_class = df_orig.groupby('class')['redshift'].max() 

print("Maximum redshift value per class:\n", max_redshift_per_class) 

 

# Plot a histogram or boxplot to visualize the redshift distribution for each class 

sns.boxplot(data=df_orig, x='class', y='redshift') 

plt.title("'redshift' distribucija pagal klasę") 

plt.xlabel("Klasė (0 = galaktika, 1 = kvazaras, 2 = žvaigždė)") 

plt.ylabel("'Redshift'") 

plt.yscale("linear") 

plt.show() 

 


	Turinys
	1. Įvadas
	1.1. Darbo tikslas
	1.2. Darbo uždaviniai
	1.3. Darbo įrankiai

	2. Duomenų analizė
	2.1. Tiriamos duomenų aibės ir jos požymių aprašymas
	2.2. Požymių ir objektų apdorojimas
	2.3. Objektų atrinkimas
	2.4. Duomenų aibės normavimas

	3. Dimensijų mažinimo metodai ir vizualizacija
	3.1. Principinių komponenčių analizė (PCA)
	3.1.1.  Aprašymas
	3.1.2. Analizė
	3.1.3. PCA išvados

	3.2. t-SNE metodas
	3.2.1. Aprašymas
	3.2.2. Branduolinių tankių ir koreliacijų grafikai
	3.2.3. t-SNE nenormuotų duomenų grafikas
	3.2.4. „n_iter“ ir „perplexity“. Normuotų duomenų rezultatai
	3.2.5. t-SNE Išvados

	3.3. UMAP metodas
	3.3.1. Aprašymas
	3.3.2. Grafikai, kai „min_dist“ vertė lygi 0
	3.3.3. Grafikai, kai „min_dist“ vertė lygi 0.5
	3.3.4. Grafikai, kai „min_dist“ vertė lygi 1
	3.3.5. Parametras „metric“
	3.3.6. UMAP Išvados


	4. Išvados
	5. Šaltiniai
	6. Kodas

