

VILNIAUS UNIVERSITETAS

MATEMATIKOS IR INFORMATIKOS FAKULTETAS

INFORMACINIŲ SISTEMŲ INŽINERIJOS STUDIJŲ PROGRAMA

Savarankiško darbo ataskaita

Atliko: Justinas Rimavičius, Edvardas

Ražanskas

VU el. p.: edvardas.razanskas@mif.stud.vu.lt,

justinas.rimavicius@mif.stud.vu.lt

Vertino: dr. Jolita Bernatavičienė

Vilnius

2024

 Duomenų tyryba. Daugiamačių duomenų dimensijų mažinimas.

mailto:edvardas.razanskas@mif.stud.vu.lt
mailto:justinas.rimavicius@mif.stud.vu.lt

3

TURINYS

Turinys.. 3

1. Įvadas ... 4

1.1. Darbo tikslas ... 4

1.2. Darbo uždaviniai ... 4

1.3. Darbo įrankiai ... 4

2. Duomenų analizė ... 5

2.1. Tiriamos duomenų aibės ir jos požymių aprašymas .. 5

2.2. Požymių ir objektų apdorojimas .. 6

2.3. Objektų atrinkimas ... 8

2.4. Duomenų aibės normavimas ... 8

3. Dimensijų mažinimo metodai ir vizualizacija...10

3.1. Principinių komponenčių analizė (PCA) ...10

3.1.1. Aprašymas ...10

3.1.2. Analizė ...10

3.1.3. PCA išvados ..12

3.2. t-SNE metodas ..13

3.2.1. Aprašymas ...13

3.2.2. Branduolinių tankių ir koreliacijų grafikai ...14

3.2.3. t-SNE nenormuotų duomenų grafikas ...17

3.2.4. „n_iter“ ir „perplexity“. Normuotų duomenų rezultatai...18

3.2.5. t-SNE Išvados ...22

3.3. UMAP metodas ..23

3.3.1. Aprašymas ...23

3.3.2. Grafikai, kai „min_dist“ vertė lygi 0 ...24

3.3.3. Grafikai, kai „min_dist“ vertė lygi 0.5 ..25

3.3.4. Grafikai, kai „min_dist“ vertė lygi 1 ...27

3.3.5. Parametras „metric“ ..29

3.3.6. UMAP Išvados ..33

4. Išvados ...33

5. Šaltiniai...34

6. Kodas ..35

4

1. ĮVADAS

1.1. Darbo tikslas

Šio darbo tikslas – pritaikant dimensijų mažinimo metodus daugiamačių duomenų

vizualizavimui, atlikti SDSS (Sloan‘o skaitmeninio dangaus tyrimo DR17) duomenų rinkinio

analizę, pateikti vizualizavimo rezultatus ir jų interpretaciją. Siekiama ištirti dimensijų

mažinimo metodų galimybes bei atlikti lyginamąją analizę, kad nustatyti, ar žvaigždžių,

galaktikų ir kvazarų požymių rinkiniai skiriasi reikšmingai ir turi galimybę būti naudojami šių

kosminių objektų klasifikavimui.

1.2. Darbo uždaviniai

1. Trumpai aprašyti tiriamą duomenų aibę, jos požymius, pagrindines savybes.

2. Paruošti duomenų aibę jos analizei, ją sunormuoti.

3. Pritaikyti dimensijų mažinimo metodus su skirtingais argumentais/parametrais.

4. Vizualizuoti rezultatus.

5. Apibendrinti rezultatus ir parašyti jų išvadas.

6. Aprašyti kiekvieno metodo privalumus, trūkumus, juos palyginti.

1.3. Darbo įrankiai

Duomenų apdorojimas, transformacija, analizė ir dimensijų mažinimo metodai buvo

pritaikyti naudojant „Python 3.12.0” programavimo kalbą ir jos bibliotekas (daugiau žiūrėti

skyrių 6. Kodas).

5

2. DUOMENŲ ANALIZĖ

2.1. Tiriamos duomenų aibės ir jos požymių aprašymas

Pateiktoje žvaigždžių klasifikacijos duomenų aibėje („Stellar Classification Dataset“) yra

100000 eilučių, 18 požymių stulpelių. Jutiklių matavimai yra „float“ tipo (t.y. priklauso realiųjų

skaičių aibei) , „class“ požymis yra „object“ tipo (t.y. simboliai), likę požymiai yra „int“ tipo

(t.y. priklauso sveikųjų skaičių aibei).

Duomenų aibės požymių aprašymai:

• obj_ID = objekto identifikatorius, unikali dangaus kūno vertė, identifikuojanti

objektą CAS naudojamame vaizdų kataloge.

• alpha = dešiniojo pakilimo kampas (pagal J2000 epochą)

• delta = deklinacijos kampas (pagal J2000 epochą)

• u = ultravioletinis astrofotometrinės sistemos filtras

2.1 pav. pradinė duomenų aibė

6

• g = žaliasis astrofotometrinės sistemos filtras

• r = raudonasis astrofotometrinės sistemos filtras

• i = artimųjų infraraudonųjų spindulių filtras astrofotometrinė sistemoje

• z = infraraudonųjų spindulių filtras astrofotometrinė sistemoje

• run_ID = serijos numeris, naudojamas konkrečiam nuskaitymui identifikuoti

• rereun_ID = pakartotinio paleidimo numeris, nurodantis, kaip vaizdas buvo

apdorotas

• cam_col = kameros stulpelis, skirtas skenavimo linijai nustatyti

• field_ID = lauko numeris kiekvienam laukui identifikuoti

• spec_obj_ID = unikalus optinių spektroskopinių objektų ID (tai reiškia, kad 2

skirtingi stebėjimai su tuo pačiu spec_obj_ID turi turėti bendrą išvesties klasę)

• class = objekto klasė (galaktika, žvaigždė arba kvazaras)

• redshift (raudonasis poslinkis) = raudonojo poslinkio vertė, pagrįsta bangos ilgio

padidėjimu

• plate = plokštės ID, identifikuojantis kiekvieną SDSS plokštę

• MJD = modifikuota Julijaus data, naudojama nurodyti, kada buvo paimta tam tikra

SDSS duomenų dalis

• fiber_ID = pluošto ID, identifikuojantis pluoštą, kuris nukreipė šviesą į židinio

plokštumą kiekvieno stebėjimo metu

2.2. Požymių ir objektų apdorojimas

Pašalinti šie požymiai, nedarantys įtakos kosminio kūno klasifikavimui:

• „obj_ID“ požymis, nes tai identifikacinis numeris nedarantis įtakos duomenims;

• „alpha“ ir „delta“ požymiai nusako kosminio objekto poziciją, o jos nėra susijusios su

skirtingų objektų (galaktikų, žvaigždžių, kvazarų) fizinėmis savybėmis;

• „spec_obj_ID“ požymis, nes 2 skirtingi stebėjimai su tuo pačiu spec_obj_ID turi turėti

bendrą išvesties klasę, o visos šio požymio reikšmės yra skirtingos;

• „rerun_ID“ požymis, nes yra tik viena unikali reikšmė;

• „MJD“ požymis, nes ji simbolizuoja datą, kada užfiksuotas stebėjimas

Duomenų aibė neturėjo praleistų reikšmių. Tolimesniems uždaviniams pasirinkome „redshift“,

„u“, „g“, „r“, „i“ ir „z“ požymius.

Duomenų aibė turėjo vieną eilutę, kurioje „u“, „g“ ir „z“ reikšmės buvo -9999, tad šią triukšmo

eilutę panaikinome (2.2 pav.).

„Class“ požymis yra kategorinis požymis, kuris turi tris unikalias reikšmes duomenų aibėje:

GALAXY – galaktika, QSO – kvazaras(ypač šviesus objektas galaktikos centre), STAR –

žvaigždė. Kiekviena šių reikšmių buvo pakeista atitinkamai į skaičius 0, 1, 2.

7

2.3 pav. „redshift“ reikšmės pasiskirstymas pagal klases

Kitų reikšmių atsiskyrėlių nešalinome, nes jos neturėjo jokių didelių išskirčių - daugumoje jų

matoma Gauso distribucija (3.2.2. poskyris), išskyrus „redshift“ reikšmėje (2.3 pav.), tačiau ši

reikšmė rodo šviesos bangų ilgėjimą, todėl jos aukštų reikšmių naikinimas pakenktų analizės

tikslumui. Taip pat, galima atkreipti dėmesį, kad objektų, priklausančių pirmai klasei

(kvazarai), „redshift“ požymio reikšmės sąlyginai yra labai aukštos.

2.2 pav. Stačiakampė „u“, „g“, „z“ reikšmių diagrama.

8

2.3. Objektų atrinkimas

Tolimesniam duomenų analizavimui, apdorojimui ir vizualizavimui buvo atsitiktinai atrinkti

po 1000 objektų iš kiekvienos klasės (2.4 pav.):

2.4 pav. Duomenų aibė su pasirinktais objektais.

2.4. Duomenų aibės normavimas

Duomenų normavimui buvo parinkti šie požymiai: „redshift“, „u“, „g“, „r“, „i“ ir „z“. Kiti

požymiai buvo nenormuoti, nes jie yra arba identifikaciniai („run_ID“, „field_ID“, „cam_col“,

„plate“, ir „fiber_ID“) arba kategoriniai („class“). Duomenys buvo normuoti naudojant du

metodus:

1. Vidurkio ir dispersijos normavimas (2.7 pav.);

2. Min-max normavimas (2.6 pav.).

2.5 pav. Nenormuotos duomenų aibės statistika.

9

2.6 pav. Min-max metodu normuota duomenų aibės statistika.

2.7 pav. Vidurkio ir dispersijos metodu normuota duomenų aibės statistika.

10

3. DIMENSIJŲ MAŽINIMO METODAI IR VIZUALIZACIJA

3.1. Principinių komponenčių analizė (PCA)

3.1.1. Aprašymas

PCA („Principal Component Analysis“) yra tiesinis dimensijų mažinimo metodas,

plačiai naudojamas duomenų analizėje ir vizualizacijoje. Skirtingai nuo netiesinių metodų,

tokių kaip t-SNE ir UMAP, PCA siekia išlaikyti globalią duomenų struktūrą, sumažindama

dimensijų skaičių taip, kad išsaugotų kuo daugiau duomenų pasiskirstymo.

Kadangi PCA yra tiesinis metodas, sumažintų dimensijų ašys turi aiškią interpretaciją

pagal pradines savybes. Tai leidžia analizuoti, kurie pradinių požymių deriniai labiausiai

prisideda prie duomenų variacijos ir kaip jie susiję su naujais komponentais.

PCA metodui pasirinkome „u“, „g“, „r“, „i“, „z“ ir „redshift“ požymius. Toliau

pateiktuose grafikuose matysime, kaip pirmosios dvi pagrindinės komponentės (PC1 ir PC2)

atspindi duomenų struktūrą ir kokią variacijos dalį jos paaiškina.

3.1.2. Analizė

Kiekvienas taškas grafike atitinka vieną duomenų aibės objektą, o spalvos (raudona,

žalia ir mėlyna) reprezentuoja skirtingas objektų klases: atitinkamai galaktikas, kvazarus ir

žvaigždes. Grafike (3.2 pav.) matoma, kad klasės iš dalies persidengia, tačiau galima

pastabėti objektų reprezentuojančių kvazarų klasę išsiskyrimą.

3.1 pav. “u”, “g”, “r”, “I”, “z”, “redshift” reikšmių įtaka PCA rezultatų ašims.

11

3.2 pav. dimensijų mažinimas PCA metodu.

Kvazarų klasė (3.2 pav. legendoje žalia spalva) daugiausiai išsiskiria Y ašyje dėl „redshift“

reikšmės. Nors ji turi gan nedidelę neigiamą įtaką (-0.245721), objektų priklausančių kvazarų

klasei „redshift“ požymio reikšmės yra didelės, lyginant su kitomis klasėmis (2.3 pav.) - tai

matoma PC2 ašyje.

PC1 turi didžiausią apkrovą iš g (0.474751), r (0.460201), u (0.449163) ir i (0.429496)

požymių (3.1 pav.), o „redshift“ (raudonasis poslinkis) turi mažiausią įtaką (0.095887) šiam

komponentui. Tai reiškia, kad šie požymiai yra stipriausiai susiję su pagrindine duomenų aibės

variacija, kurią aprašo PC1.

PC2 rodo didžiausią teigiamą apkrovą „u“ požymiui (0.743025), tačiau „z“ (-0.452531)

ir „i“ (-0.349596) požymiai turi didelę neigiamą apkrovą.

12

Pirmoji pagrindinė komponentė (PC1) paaiškina 79.5% visos duomenų aibės variacijos,

o antroji komponentė (PC2) – papildomus 14.8%. Tai reiškia, kad šie du komponentai bendrai

paaiškina apie 94.3% visos variacijos, kas yra pakankamai daug, kad būtų galima sumažintą

duomenų aibės erdvę naudoti vizualizacijai ir tolimesnei analizei.

3.1.3. PCA išvados

Skirtingos duomenų klasės—galaktikos, kvazarai ir žvaigždės—iš dalies atsiskiria PCA

vizualizacijoje. Pirmieji pagrindiniai komponentai, sudaryti iš požymių „z“, „i“, „r“, „g“ ir „u“,

paaiškina 94,3% duomenų variacijos. Vizualizacijoje pastebėjome objektų grupių

persidengimą, priklausančių 0 ir 2 klasėms, tačiau objektų, priklausančių 1 klasei, grupė

atsiskiria pakankamai aiškiai.

Tačiau, atsižvelgiant į tai, kad „redshift“ požymio pasiskirstymas tarp klasių yra labai

skirtingas, o PCA metodas jam nesuteikė didelės reikšmės, negalime visiškai pasitikėti vien

PCA metodo rodomais rezultatais. Tai rodo, kad PCA gali praleisti svarbią informaciją,

susijusią su „redshift“ požymiu, ir gali būti nepakankamas šių duomenų analizės metodas.

13

3.2. t-SNE metodas

3.2.1. Aprašymas

t-SNE („t-Distributed Stochastic Neighbor Embedding“) yra vizualizacijos technika,

naudojama dimensijų mažinimui. Skirtingai nuo tiesinių metodų, tokių kaip PCA, kurie bando

išlaikyti globalią struktūrą, t-SNE daugiausia dėmesio skiria lokalių struktūrų išsaugojimui –

tai reiškia, kad jis stengiasi išlaikyti artimiausius taškus kartu net ir sumažintoje dimensijoje,

todėl ši technika puikiai tinka grupių atskleidimui duomenyse.

Kadangi t-SNE yra netiesinis metodas, sumažintų dimensijų ašys neturi aiškios

interpretacijos pagal pradines savybes. Norint geriau suprasti, kurie pradinių duomenų

požymiai gali daryti įtaką t-SNE rezultatams, galima atlikti koreliacijos analizę tarp pradinių

objektų savybių ir t-SNE dimensijų. t-SNE metodui buvo parinkti „u“, „g“, „r“, „i“, „z“,

„redshift“ požymiai ir jis taikytas normuotiem pagal „min-max“ metodą duomenim (nebent

nurodyta kitaip).

Kuriant t-SNE modelius, yra svarbūs du pagrindiniai parametrai: „perplexity“ ir „n_iter“.

Toliau pateiktuose grafikuose bus matoma, kokią įtaką grafikams daro skirtingos šių parametrų

reikšmės.

• „perplexity“ parametras nurodo kiekvieno taško kaimynų skaičių.

• „n_iter“ parametras nustato iteracijų skaičių, per kurias algoritmas optimizuoja taškų

padėtis sumažintoje erdvėje.

14

3.2.2. Branduolinių tankių ir koreliacijų grafikai

Žemiau pateiktas koreliacijų grafikas ir „u“, „g“, „r“, „i“ bei „z“ reikšmių branduolinio

tankio grafikai padės suprasti 3.2.3 punkte aprašomą dimensijų mažinimą t-SNE metodu.

3.3 pav. Koreliacija tarp „redshift“, „u“, „g“, „r“, „z“ reikšmių ir t-SNE dimensijų.

Koreliacijų grafikas (3.3 pav.) atvaizduoja t-SNE metodu sumažintų dimensijų grafiko ašių „t-

SNE Dimension 1” ir „t-SNE Dimension 2“ koreliacijas su „redshift“, „u“, „g“, „r“, ‚i“ ir „z“

vertėmis.

Sekantys 5 grafikai atvaizduoja normuotų šviesos spektro duomenų histogramas (3.4 pav. – 3.8

pav.). Toliau analizuojant t-SNE dimensijų mažinimo metodą remsimės šiais grafikais.

15

3.4 pav. „z“ reikšmės distribucija pagal klasę.

3.5 pav. „r“ reikšmės distribucija pagal klasę.

16

3.6 pav. „i“ reikšmės distribucija pagal klasę.

3.7 pav. „u“ reikšmės distribucija pagal klasę.

3.8 pav. „g“ reikšmės distribucija pagal klasę.

17

3.2.3. t-SNE nenormuotų duomenų grafikas

3.9 pav. t-SNE metodu 5 dimensijų, sumažintų į 2, grafikas.

Pradiniame t-SNE grafike, kuriame požymiai nebuvo normuoti (3.9 pav.), yra

matomos dalinai išsiskiriančios struktūros. Labiausiai išsiskiria kvazarai, pagrinde turintys

aukštas 2 dimensijos ir žemas 1 dimensijos reikšmes.

Galima pastebėti, kad šiai objektų grupei įtaką daro „redshift“ reikšmė. Tai

matosi koreliacijų grafike (3.3 pav.) – 1 dimensija su „redshift“ reikšme koreliuoja neigiamai

(-0.47), o 2 dimensija koreliuoja teigiamai (0.64). Šie skaičiai stipriai paveikia objektų grupės,

priklausančių kvazarų klasei, poziciją, nes „redshift“ reikšmė šioje kategorijoje yra išsidėsčiusi

plačiame intervale – didžioji dalis reikšmių yra nuo 0 iki 0.4, o mažytė dalis reikšmių siekia

0.7 (2.3 pav.).

Taip pat galima pastebėti platų objektų, priklausančių žvaigždžių klasei (2

kategorija legendoje), išsidėstymą abiejose dimensijose. Žvelgiant į distribucijų pagal klasę

grafikus (3.4 pav. – 3.8 pav.) matosi, jog žvaigždžių „u“, „g“, „r“, „i“ ir „z“ spektrai yra

išsidėstę plačiausiai – [0.3; 1], [0.3, 1], [0.3; 0.8], [0.1; 0.5] ir [0.2; 0.7] intervaluose

atitinkamai, tai gali paaiškinti tokį platų grupių formavimasi 1 dimensijoje.

18

3.2.4. „n_iter“ ir „perplexity“. Normuotų duomenų rezultatai

Žemiau pateikti grafikai rodo t-SNE algoritmo vizualizacijas su skirtingomis parametro

„n_iter“ reikšmėmis. Šis parametras rodo atliekamų iteracijų kiekį. Galima pastebėti, kad

didesnis iteracijų kiekis labiau atskiria objektų grupes. Tai matoma žemiau pateiktuose

grafikuose – kai „n_iter“ reikšmė lygi 250, grafike (3.10 pav.) matomi didesni atstumai tarp

objektų ir didesnis objektų grupių persidengimas, kai „n_iter“ reikšmė lygi 750 (3.11 pav.),

objektų klasės yra labiau grupuotos. Atitinkamai dar didesnė „n_iter“ reikšmė lygi 2250 (3.12

pav.) objektų klases grupuoja dar labiau, nors skirtumas nebėra toks didelis. Taigi, didesnės

„n_iter“ parametro reikšmės labiau atskirs objektus į skirtingas grupes.

3.10 pav. Dimensijų mažinimas t-SNE metodu. „n_iter“ reikšmė 250.

19

3.11 pav. Dimensijų mažinimas t-SNE metodu. „n_iter“ reikšmė 750.

3.12 pav. Dimensijų mažinimas t-SNE metodu. „n_iter“ reikšmė 2250.

20

Žemiau pateikti grafikai rodo t-SNE algoritmo vizualizacijas su skirtingomis parametro

„perplexity“ reikšmėmis. Šis parametras yra itin svarbus t-SNE, nes jis nurodo objektų

artimiausių kaimynų kiekį, į kurį algoritmas turėtų atsižvelgti, siekiant nustatyti objektų

panašumus. Mažesnė „perplexity“ reikšmė orientuojasi į lokalią duomenų struktūrą, todėl

labiau išryškina smulkesnes, vietines objektų grupes (3.13 pav.). Tuo tarpu didesnės

„perplexity“ reikšmės, lygios 30 (3.14 pav.) ir 90 (3.15 pav.), leidžia algoritmui atsižvelgti į

platesnį kontekstą, įtraukiant ir tolimesnius taškus. Tokiu būdu gaunama vizualizacija su labiau

apjungtomis objektų grupėmis, kurios atspindi bendresnį duomenų modelį.

Taigi, „perplexity“ parametras turi didelę įtaką galutinei vizualizacijai – mažesnės

reikšmės atsižvelgia į vietines struktūras, o didesnės apjungia atsižvelgia į šiek tiek platesnes

struktūras.

3.13 pav. Dimensijų mažinimas t-SNE metodu. „perplexity“ reikšmė 10.

21

3.14 pav. Dimensijų mažinimas t-SNE metodu. „perplexity“ reikšmė 30.

3.15 pav. Dimensijų mažinimas t-SNE metodu. „perplexity“ reikšmė 90.

22

3.2.5. t-SNE Išvados

Skirtingos duomenų klasės (galaktikos, kvazarai, žvaigždės) atsiskiria t-SNE

vizualizacijoje. Nors objektų, priklausančių galaktikų ir žvaigždžių klasėms, grupės vietomis

persidengia, galime gana aiškiai atskirti kvazarų klasės objektų grupę.

t-SNE parametrų „n_iter“ ir „perplexity“ keitimas daro didelę įtaką vizualizacijos

rezultatams. Grafikuose matoma, kad didesnė „n_iter“ reikšmė suteikia daugiau iteracijų,

leidžiančių algoritmui stabiliau optimizuoti taškų pozicijas, kas lemia aiškesnį grupių

išsidėstymą. „Perplexity“ keitimas leidžia reguliuoti, kiek algoritmas atsižvelgia į vietines

struktūras (mažesnis „perplexity“) arba šiek tiek platesnes struktūras (didesnis „perplexity“),

tačiau t-SNE metodas iš esmės yra labiau orientuotas į vietinių struktūrų išryškinimą.

Geriausiai objektus sugrupuojančio t-SNE metodo parametrai yra, kai „perplexity“ lygus

90, o kiti parametrai nekeičiami. Tačiau dalis antros ir pirmos klasės grupių persidengia, tad

nerekomenduojama naudotis vien šiuo metodu.

23

3.3. UMAP metodas

3.3.1. Aprašymas

UMAP („Uniform Manifold Approximation and Projection“) yra vizualizacijos technika,

naudojama dimensijų mažinimui, ypač efektyvi grupių atskleidimui duomenyse. Panašiai kaip

t-SNE, UMAP yra netiesinis metodas, kuris daugiausia dėmesio skiria lokalių struktūrų

išsaugojimui. UMAP taip pat atsižvelgia į globalią struktūrą, todėl jis gali išsaugoti daugiau

informacijos apie bendrą duomenų pasiskirstymą lyginant su t-SNE metodu, tuo pačiu

efektyviai vizualizacijoje rodant grupes.

Kadangi UMAP yra netiesinis metodas, norint geriau suprasti, kurie pradinių duomenų

bruožai gali daryti įtaką UMAP rezultatams, galima atlikti koreliacijos analizę tarp pradinių

objektų savybių ir UMAP dimensijų.

Kuriant UMAP modelius išskiriami trys pagrindiniai parametrai: „n_neighbors“,

„min_dist“ ir „metric“. Toliau pateiktuose grafikuose matysime kokią įtaką grafikui daro

skirtingos „n_neighbors“, „min_dist“ ir „metric“ reikšmės.

• „n_neighbors“ parametras nurodo, kiek artimiausių kaimynų yra laikoma kiekvieno

taško vietinės struktūros apibrėžimui aukštesnėje dimensijoje.

• „min_dist“ parametras nustato minimalią leistiną atstumą tarp taškų sumažintoje

dimensijoje. „min_dist“ kontroliuoja, kaip glaudžiai ar laisvai išdėstyti taškai.

• „metric“ parametras nurodo funkciją, kurią UMAP metodas naudoja skaičiuodamas

atstumus tarp taškų aukštos dimensijos erdvėje. Tai turi įtakos tam, kaip algoritmas

supranta taškų panašumus ir formuoja vietinę bei globalią struktūrą.

UMAP metodas buvo taikytas normuotiem pagal „Z-score“ duomenims ir pasirinkti „u“, „g“,

„r“, „i“, „z“, „redshift“ požymiai. Grafikai sugrupuoti po tris į tris dalis: kai „min_dist“

parametras lygus 0 (3.3.2.), kai „min_dist“ parametras lygus 0,5 (3.3.3.) ir kai „min_dist“

parametras lygus 1 (3.3.1.). Kiekvienas iš grafikų su skirtingu „min_dist“ parametru, turi

„n_neighbors“ parametrą: 5, 15 ir 50.

24

3.3.2. Grafikai, kai „min_dist“ vertė lygi 0

3.16 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 0, n_neighbors vertės keitimas.

3.17 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 0, n_neighbors vertės keitimas.

25

3.18 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 0, n_neighbors vertės keitimas.

3.3.3. Grafikai, kai „min_dist“ vertė lygi 0.5

3.19 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 0.5, „n_neighbors“ vertės keitimas.

26

3.20 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 0.5, „n_neighbors“ vertės keitimas.

3.21 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 0.5, „n_neighbors“ vertės keitimas.

27

3.3.4. Grafikai, kai „min_dist“ vertė lygi 1

3.22 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 1, n_neighbors vertės

keitimas.

3.23 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 1, n_neighbors vertės

keitimas.

28

3.24 pav. Dimensijų mažinimas UMAP metodu. „min_dist“ vertė 1, n_neighbors vertės keitimas.

Šiuose grafikuose aiškiai matosi grafikų pokytis keičiantis „n_neighbors“ ir „min_dist“

parametrams.

Ryškiausi „n_neighbors“ parametro pokyčio rezultatai matosi, kai „min_dist“ parametras

lygus 0 (3.3.2. dalis). Mažesnės „n_neighbors“ vertės (3.16 pav.) orientuojasi į lokalią struktūrą

ir visus objektus sutraukia į mažesnes grupes. Didesnės „n_neighbors“ vertės (3.17 pav. ir 3.18

pav.) apima daugiau objektų, daugiau dėmesio skiriama globaliam duomenų struktūros

vaizdui, išryškinamos platesnės grupės ir globali struktūra.

Parametro „min_dist“ verčių skirtumus galime matyti visuose poskyriuose (3.3.2, 3.3.3

ir 3.3.4 poskyriai), atitinkamuose „n_neighbors“ pokyčių grafikuose. Šis parametras

reguliuoja, kaip glaudžiai yra išsidėstę objektai. Šio parametro įtaką iškarto pastebime tarp 3.16

pav. ir 3.19 pav. – abiejuose grafikuose parametras n_neighbors išlieka tas pats (lygus nuliui),

tačiau min_dist vertė pasikeičia iš 0 į 0.5, ir atstumas tarp visų objektų tampa akivaizdžiai

didesnis. Mažesnė „min_dist“ vertė (3.16 pav.) leidžia taškams sumažintoje dimensijoje būti

arti vienas kito, todėl susidaro kompaktiškesnės grupės ir atvaizduojama lokali struktūra.

Didesnė min_dist vertė (3.19 pav.) leidžia taškams būti toliau vienas nuo kito sumažintoje

dimensijoje, todėl vizualizacijoje matomi didesni tarpai tarp taškų. Tai vėlgi atvaizduoja

globalesnę struktūrą.

29

3.3.5. Parametras „metric“

Grafikas, kuriame yra sąlyginai mažiausiai persidengimų tarp skirtingų klasių, turi

parametrus – „n_neighbors“ reikšmė lygi 15 ir „min_dist“ reikšmė lygi 1 (3.23 pav.). Toliau

bus bandoma dar labiau sumažinti grupių pagal klases persidengimą, naudojant metric

parametrą.

Parametro „metric“ reikšmė yra atstumo funkcija. Čia buvo naudojamos „euclidean“,

„manhattan“, „cosine“ ir „correlation“ metrikų reikšmės.

• „euclidean“ metrika skaičiuoja tiesioginį geometrinį atstumą tarp taškų;

• „manhattan“ metrika skaičiuoja atstumą pagal „miesto kvartalo“ principą, kur

atstumai matuojami tik horizontaliai ir vertikaliai;

„cosine“ metrika vertina kampinį panašumą tarp taškų, orientuojantis į jų vektorių kryptį, o ne

atstumą tarp jų. Nors ši metrika dažniausiai taikoma analizuojant tekstinius dokumentus, tačiau

ji taip pat pasitarnavo ir mūsų analizei, padėdama geriau atskirti grupes;

• „correlation“ metrika matuoja, kiek dvi savybės yra tarpusavyje priklausomos, t.y.

koreliuoja, o ne kiek jos yra nutolusios viena nuo kitos. Jei savybės didėja ar mažėja

panašiai, „correlation“ metrika parodys stipresnį panašumą tarp tų taškų, net jei jų

tikrosios vertės yra skirtingos;

3.25 pav. Dimensijų mažinimas UMAP metodu. „metric“ parametras lygus „euclidean“.

30

3.26 pav. Dimensijų mažinimas UMAP metodu. „metric“ parametras lygus „manhattan“.

3.27 pav. Dimensijų mažinimas UMAP metodu. „metric“ parametras lygus „cosine“.

31

3.28 pav. Dimensijų mažinimas UMAP metodu. „metric“ parametras lygus „correlation“.

Galime aiškiai pastebėti, kad grafikuose, kai atstumai skaičiuojami naudojant

„correlation“ ir „cosine“ metrikas, objektų grupės tsiskiria daug labiau negu naudojant

numatytąją „euclidean“ metriką. Požymių įtaką galime daugmaž įvertinti atlikus koreliacijos

analizę tarp pradinių objektų savybių ir UMAP dimensijų. Verta atkreipti dėmesį, kad

kiekvieną kartą skaičiuojant koreliacijas gausime šiek tiek skirtingus rezultatus, tačiau galime

pastebėti bendras tendencijas.

Pirmame grafike (3.29 pav.) matome UMAP modelio koreliacijas, kai parametro

„n_neighbor“ reikšmė lygi 15, „min_dist“ reikšmė lygi 1 ir „metric“ reikšmė lygi „euclidean“,

o antrame grafike (3.30 pav.) koreliacijas, kai „n_neighbor“ ir „min_dist“ reikšmės tokios

pačios, tik „metric“ skiriasi – ji lygi „cosine“. Matoma, kad aktualiausi parametrai naudojant

„euclidean“ metriką yra „r“, „i“ ir „z“ (vertės tiek UMAP 1, tiek UMAP 2 ašyje koreliuoja

neigiamai, apie -0.5). O naudojant „cosine“ metriką aktualiausi parametrai yra „i“, „z“ ir

„redshift“, kuria teigiamai koreliuoja UMAP 1 ašyje apie 0.5, ir neigiamai koreliuojantys

UMAP 2 ašyje (apie -0.5) “u”, „g“ ir „redshift“.

32

3.29 pav. UMAP gauto grafiko „euclidean“ metrika ašių ir „redshift“, „u“, „g“, „r“, „i“, „z“ reikšmių

koreliacijos.

3.30 pav. UMAP gauto grafiko „cosine“ metrika ašių ir „redshift“, „u“, „g“, „r“, „i“, „z“ reikšmių

koreliacijos.

33

3.3.6. UMAP Išvados

Skirtingos duomenų klasės – galaktikos, kvazarai ir žvaigždės – aiškiausiai atsiskiria

UMAP vizualizacijoje kai yra šios parametrų reikšmės: „n_neighbor“ reikšmė lygi 15,

„min_dist“ reikšmė lygi 1 ir „metric“ reikšmė lygi „cosine“ arba „correlation“.

UMAP metodas yra veiksmingas dimensijų mažinimo metodas, kurį galime pritaikyti

keičiant „n_neighbors“, „min_dist“ ir „metric“ parametrus. UMAP metodo vizualizacijos

rezultatuose matoma, kad didesnės parametrų „n_neighbors“ ir „min_dist“ reikšmės lemia

grafiką su didesniais atstumais tarp taškų – mažiau atskirtos objektų grupės, o mažesnės

reikšmės išryškina vietines struktūras. Be to, „metric“ parametro pasirinkimas nusako metriką,

kurią UMAP naudoja skaičiuojant atstumus tarp objektų, o tai daro įtaką objektų grupavimuisi.

Metrika „cosine“ yra naudingesnė analizuojant duomenis, kuriuose svarbu išlaikyti savybių

proporcinius santykius ir priklausomumus, o ne absoliučius dydžius. Tai buvo pastebėta ir

tankio grafikuose (3.4 pav. – 3.8 pav.), kur „z“, „i“, „r“, „g“, „u“ požymių tankio pasiskirstymas

tarp klasių buvo panašus, t. y. jų proporciniai santykiai buvo panašūs.

4. IŠVADOS

Atliekant duomenų analizę naudojant PCA, t-SNE ir UMAP metodus, pastebėjome, kad

kiekvienas iš jų turi savo stipriąsias ir silpnąsias puses. PCA metodas efektyviai sumažina

dimensijų skaičių ir paaiškina didelę duomenų dispersiją, tačiau gali praleisti svarbius

požymius, tokius kaip „redshift“, kurie nėra gerai atspindėti pagrindinėse komponentėse.

t-SNE ir UMAP metodai geriau išryškina duomenų struktūrą ir grupes, leidžiančias

aiškiau atskirti skirtingas klases – galaktikas, kvazarus ir žvaigždes. Tačiau šių UMAP ir t-

SNE dimensijų reikšmės neturi konkrečios prasmės, todėl sunku interpretuoti kaip konkretūs

požymiai įtakoja galutinę struktūrą. Jų rezultatai stipriai priklauso nuo metodų parametrų, tokių

kaip „perplexity“ ir „n_iter“ (t-SNE), bei „n_neighbors“, „min_dist“ ir „metric“ (UMAP). „t-

SNE“ metodas prastai išlaiko globalią struktūrą, todėl jį naudingiau taikyti ieškant lokalių

struktūrų. Mūsų atveju, informatyviausias metodas, kuriame aiškiausiai atskiriamos grupės yra

UMAP su parametrais „n_neighbor“ reikšmė lygi 15, „min_dist“ reikšmė lygi 1 ir „metric“

reikšmė lygi „cosine“ arba „correlation“. PCA metodo naudoti nerekomenduojama su šia

duomenų aibe.

Apibendrinant, norint efektyviai analizuoti aukštos dimensijos duomenis ir aptikti bei

atvaizduoti atsiskiriančias grupes, verta naudoti kelis dimensijų mažinimo metodus. Tai leidžia

gauti išsamesnį supratimą apie duomenų struktūrą ir užtikrina, kad svarbi informacija nebūtų

prarasta dėl konkretaus metodo apribojimų. Be to, parametrų ir metrikų pasirinkimas turi būti

kruopščiai apsvarstytas, siekiant išlaikyti svarbias savybių proporcijas ir priklausomybes

duomenyse.

34

5. ŠALTINIAI

• https://umap-learn.readthedocs.io/en/latest/parameters.html

• https://www.analyticsvidhya.com/blog/2018/08/dimensionality-reduction-

techniques-python/

• https://pandas.pydata.org/docs/

• https://www.kaggle.com/datasets/fedesoriano/stellar-classification-dataset-sdss17

35

6. KODAS

import pandas as pd

import numpy as np

libraries for easier visualisation

import matplotlib.pyplot as plt

import matplotlib.colors as mcolors

import seaborn as sns

libraries for dimensionality reduction

import scipy.stats as stats

from sklearn import manifold

from sklearn.decomposition import PCA

from sklearn.decomposition import TruncatedSVD

import umap

setting options

pd.set_option('display.max_columns', None)

pd.set_option('float_format', '{:f}'.format)

df_orig = pd.read_csv("star_classification.csv", delimiter=',')

df_orig.info()

df_orig.describe()

df_orig.isna().sum().sum()

df_orig[df_orig['plate'].duplicated()]

df_orig['run_ID'].nunique()

df_orig['rerun_ID'].nunique()

Data Cleaning

Removing not needed columns

df_orig.drop(columns=['obj_ID', 'alpha', 'delta', 'spec_obj_ID', 'rerun_ID', 'MJD'],

inplace=True)

Outlier Removing

IQR nustatyti atsiskyrėlių ribas

def detect_outliers_iqr(data):

 Q1 = data.quantile(0.25)

 Q3 = data.quantile(0.75)

 IQR = Q3 - Q1

 lower_bound = Q1 - 1.5 * IQR

 upper_bound = Q3 + 1.5 * IQR

 outliers = (data < lower_bound) | (data > upper_bound)

 return outliers, lower_bound, upper_bound

iqr_outliers, lower_bound, upper_bound = detect_outliers_iqr(df_orig[['u', 'g', 'r',

'i', 'z']])

for column in df_orig[['u', 'g', 'r', 'i', 'z']].columns:

 print(f"IQR lower bound for '{column}': {lower_bound[column]:.2f}")

 print(f"IQR upper bound for '{column}': {upper_bound[column]:.2f}")

 print("\n")

panaikinti ekstremalių atsiskyrėlių vieną eilutę, kurioje reikšmės yra -9999

df_orig = df_orig[(df_orig[['u', 'g', 'r', 'i', 'z']] != -9999).all(axis=1)]

36

df_orig.describe()

Encoding labels

df_orig.replace(['GALAXY', 'QSO', 'STAR'], [0, 1, 2], inplace=True)

Choosing random 1000 objects from each class

df = df_orig.groupby('class', group_keys=False).apply(lambda x:

x.sample(n=1000)).reset_index(drop=True)

Normalization

kiti masyvai nebuvo normalizuoti, nes jie buvo pavadinimai, kampo laipsniai,

kategorijos ar ID

normalization_cols = ['redshift', 'u', 'g', 'r', 'i', 'z']

dfn = df.copy()

dfminmax = df.copy()

for col in normalization_cols:

 dfn[col] = (dfn[col] - dfn[col].mean()) / dfn[col].std()

 #min-max normalization

 dfminmax[col] = (dfminmax[col] - dfminmax[col].min()) / (dfminmax[col].max() -

dfminmax[col].min())

df.describe()

dfn.describe()

dfminmax.describe()

Visualisation

PCA

feature_cols = ['u', 'g', 'r', 'i', 'z', 'redshift']

pca = PCA(n_components=2)

pca_result = pca.fit_transform(df[feature_cols].values)

pca_df = pd.DataFrame(data = pca_result, columns = ['principal component 1',

'principal component 2'])

Explained variability per principal component

print(pca.explained_variance_ratio_)

plt.figure()

plt.figure(figsize=(7,7))

plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

plt.xlabel('PC 1', fontsize=13)

plt.ylabel('PC 2', fontsize=13)

plt.title("Principinių komponenčių analizė", fontsize=15)

targets = [0, 1, 2]

colors = ['r', 'g', 'b']

for target, color in zip(targets,colors):

 indicesToKeep = df['class'] == target

 plt.scatter(pca_df.loc[indicesToKeep, 'principal component 1']

 , pca_df.loc[indicesToKeep, 'principal component 2'], c = color, s =

15)

plt.legend(targets,prop={'size': 15}) #

Fit PCA

pca.fit(df[feature_cols])

create df for showing loadings

37

loadings_df = pd.DataFrame(pca.components_, columns=feature_cols, index=['PC1',

'PC2'])

loadings_df

TSNE

import matplotlib.pyplot as plt

from sklearn import manifold

import pandas as pd

n_iter = 250

fig, ax = plt.subplots(1, 1, figsize=(8, 6), constrained_layout=True)

class_labels = ["Galaktika (0)", "Kvazaras (1)", "Žvaigždė (2)"]

tsne = manifold.TSNE(n_components=2, n_iter=n_iter, random_state=42)

tsne_data = tsne.fit_transform(df[feature_cols].values)

for class_value, label in zip([0, 1, 2], class_labels):

 class_mask = pd.factorize(df['class'])[0] == class_value

 ax.scatter(tsne_data[class_mask, 0], tsne_data[class_mask, 1], label=label,

alpha=0.7)

ax.set_title("t-SNE", fontsize=20)

ax.set_xlabel('t-SNE Dimensija 1', fontsize=18)

ax.set_ylabel('t-SNE Dimensija 2', fontsize=18)

ax.legend(loc="upper right", fontsize=16)

Show the plot

plt.show()

df['t-SNE Dimension 1'] = tsne_data[:, 0]

df['t-SNE Dimension 2'] = tsne_data[:, 1]

correlation_matrix = df[['u', 'g', 'r', 'i', 'z', 'redshift', 't-SNE Dimension 1', 't-

SNE Dimension 2']].corr()

correlation_with_tsne = correlation_matrix[['t-SNE Dimension 1', 't-SNE Dimension

2']].iloc[:-2]

plt.figure(figsize=(8, 6))

sns.heatmap(correlation_with_tsne, annot=True, cmap="coolwarm", vmin=-1, vmax=1)

plt.title("Koreliacija tarp reikšmių ir t-SNE dimensijų", fontsize=20)

plt.xlabel("t-SNE Dimensijos", fontsize=18)

plt.ylabel("Reikšmės", fontsize=18)

plt.show()

n_iter increase

initial_n_iter = 250

doublings = 2

fig, axes = plt.subplots(doublings + 1, 1, figsize=(8, 6 * (doublings + 1)),

constrained_layout=True)

class_labels = ["Galaktika (0)", "Kvazaras (1)", "Žvaigždė (2)"]

colors = plt.cm.viridis([0.2, 0.5, 0.8])

for i in range(doublings + 1):

 n_iter = initial_n_iter * (3 ** i)

 tsne = manifold.TSNE(n_components=2, n_iter=n_iter, random_state=42)

38

 tsne_data = tsne.fit_transform(df[feature_cols].values)

 ax = axes[i] if doublings > 0 else axes

 for class_value, color, label in zip([0, 1, 2], colors, class_labels):

 class_mask = pd.factorize(df['class'])[0] == class_value

 ax.scatter(tsne_data[class_mask, 0], tsne_data[class_mask, 1], color=color,

label=label, alpha=0.7)

 ax.set_title(f"t-SNE su n_iter={n_iter}", fontsize=20)

 ax.set_xlabel('t-SNE Dimensija 1', fontsize=18)

 ax.set_ylabel('t-SNE Dimensija 2', fontsize=18)

 ax.legend(loc="upper right")

plt.show()

perplexity increase

initial_perp = 10

doublings = 2

fig, axes = plt.subplots(doublings + 1, 1, figsize=(8, 6 * (doublings + 1)),

constrained_layout=True)

class_labels = ["Galaktika (0)", "Kvazaras (1)", "Žvaigždė (2)"]

colors = plt.cm.viridis([0.2, 0.5, 0.8])

for i in range(doublings + 1):

 perp = initial_perp * (3 ** i)

 tsne = manifold.TSNE(n_components=2, n_iter=250, perplexity=perp, random_state=42)

 tsne_data = tsne.fit_transform(df[feature_cols].values)

 ax = axes[i] if doublings > 0 else axes

 for class_value, color, label in zip([0, 1, 2], colors, class_labels):

 class_mask = pd.factorize(df['class'])[0] == class_value

 ax.scatter(tsne_data[class_mask, 0], tsne_data[class_mask, 1], color=color,

label=label, alpha=0.7)

 ax.set_title(f"t-SNE su perplexity={perp}", fontsize=20)

 ax.set_xlabel('t-SNE Dimensija 1', fontsize=18)

 ax.set_ylabel('t-SNE Dimensija 2', fontsize=18)

 ax.legend(loc="upper right")

plt.show()

UMAP

feature_cols = ['u', 'g', 'r', 'i', 'z', 'redshift']

def draw_umap(n_neighbors=15, min_dist=0.1, n_components=2, metric='euclidean',

title='', data=df):

 fit = umap.UMAP(

 n_neighbors=n_neighbors,

 min_dist=min_dist,

 n_components=n_components,

 metric=metric

)

 u = fit.fit_transform(df[feature_cols])

 colors = ['r', 'g', 'b']

 class_labels = ['GALAKTIKA', 'KVAZARAS', 'ŽVAIGŽDĖ']

 cmap = mcolors.ListedColormap(colors)

 fig, ax = plt.subplots(figsize=(10, 7))

 scatter = ax.scatter(u[:, 0], u[:, 1], c=data['class'], cmap=cmap, s=15)

 plt.title(title, fontsize=16)

 plt.xlabel('UMAP 1', fontsize=14)

39

 plt.ylabel('UMAP 2', fontsize=14)

 legend_handles = [plt.Line2D([0], [0], marker='o', color='w',

markerfacecolor=colors[i], markersize=10)

 for i in range(len(class_labels))]

 plt.legend(legend_handles, [f"({i}) {label}" for i, label in

enumerate(class_labels)], title="Klasės")

 plt.show()

for x in (df, dfminmax, dfn):

 for n in (15, 50, 200):

 draw_umap(n_neighbors=n, metric='manhattan', title='n_neighbors =

{}'.format(n), data=x)

for each of min distances 0, 0.5 and 1 take n_neighbors 5, 15 and 50 and draw umap

graphs

for d in (0.0, 0.5, 1):

 for n in (5, 15, 50):

 draw_umap(n_neighbors=n, min_dist=d, title='n_neighbors = {}, min_dist =

{}'.format(n, d), data=dfn)

for metric_s in ('manhattan', 'euclidean', 'cosine', 'correlation'):

 draw_umap(n_neighbors=15, min_dist=1, metric=metric_s, title='metric = {}

n_neighbors = 15, min_dist = 1'.format(metric_s), data=dfn)

Define UMAP model and get the embeddings

umap_model = umap.UMAP(n_neighbors=15, min_dist=1, n_components=2, metric='cosine')

umap_embedding = umap_model.fit_transform(df[feature_cols])

DataFrame for the UMAP results and feature columns

umap_df = pd.DataFrame(umap_embedding, columns=['UMAP1', 'UMAP2'])

features_df = df[feature_cols]

Correlations between each feature and the UMAP axes

correlations = features_df.corrwith(umap_df['UMAP1']).to_frame(name='UMAP1')

correlations['UMAP2'] = features_df.corrwith(umap_df['UMAP2'])

print("n_neighbors=15, min_dist=1, metric=cosine")

sns.heatmap(correlations, annot=True, cmap="coolwarm")

Define UMAP model and get the embeddings

umap_model = umap.UMAP(n_neighbors=5, min_dist=1, n_components=2, metric='euclidean')

umap_embedding = umap_model.fit_transform(df[feature_cols])

DataFrame for the UMAP results and feature columns

umap_df = pd.DataFrame(umap_embedding, columns=['UMAP1', 'UMAP2'])

features_df = df[feature_cols]

Correlations between each feature and the UMAP axes

correlations = features_df.corrwith(umap_df['UMAP1']).to_frame(name='UMAP1')

correlations['UMAP2'] = features_df.corrwith(umap_df['UMAP2'])

print("n_neighbors=15, min_dist=1, metric=euclidean")

sns.heatmap(correlations, annot=True, cmap="coolwarm")

histograms, box plots

plt.figure(figsize=(12, 6))

sns.histplot(data=dfminmax, x='redshift', hue='class', bins=30, kde=True,

palette='viridis')

plt.title("Redshift distribucija pagal klasę", fontsize=16)

plt.xlabel("Redshift", fontsize=16)

plt.ylabel("Dažnis", fontsize=16)

plt.legend(title="Klasė", labels=["Galaktika (0)", "Kvazaras (1)", "Žvaigždė (2)"],

fontsize=20)

40

plt.show()

features = ['u', 'g', 'r', 'i', 'z']

n_rows = len(features)

fig, axes = plt.subplots(n_rows, 1, figsize=(12, 6 * n_rows), constrained_layout=True)

for i, feature in enumerate(features):

 sns.kdeplot(data=dfminmax, x=feature, hue='class', palette='viridis', ax=axes[i],

fill=False, linewidth=2.5)

 axes[i].set_title(f"{feature} distribucija pagal klasę", fontsize=16)

 axes[i].set_xlabel(feature, fontsize=16)

 axes[i].set_ylabel("Tankis", fontsize=16)

 axes[i].legend(title="Klasė", labels=["Galaktika (0)", "Kvazaras (1)", "Žvaigždė

(2)"], fontsize=12, title_fontsize=14, loc="upper right")

plt.show()

plt.figure(figsize=(10, 6))

sns.boxplot(data=df_orig[['u', 'g', 'z', 'r', 'i', 'redshift']], color='skyblue')

plt.title("Stačiakampė diagrama, pabrėžianti 'u', 'g', ir 'z' atsiskyrėlius")

plt.ylabel("Reikšmė")

plt.show()

Create a separate figure for histograms

fig, axs = plt.subplots(2, 3, figsize=(15, 10))

List of columns to plot histograms for

columns = ['u', 'g', 'z', 'r', 'i', 'redshift']

Generate histograms for each column

for i, col in enumerate(columns):

 sns.histplot(df_orig[col], bins=30, ax=axs[i//3, i%3], kde=True, color='skyblue')

 axs[i//3, i%3].set_title(f"'{col}' histograma", fontsize=20)

 axs[i//3, i%3].set_xlabel("Reikšmė", fontsize=18)

 axs[i//3, i%3].set_ylabel("Dažnis", fontsize=18)

plt.tight_layout()

plt.show()

max_redshift_per_class = df_orig.groupby('class')['redshift'].max()

print("Maximum redshift value per class:\n", max_redshift_per_class)

Plot a histogram or boxplot to visualize the redshift distribution for each class

sns.boxplot(data=df_orig, x='class', y='redshift')

plt.title("'redshift' distribucija pagal klasę")

plt.xlabel("Klasė (0 = galaktika, 1 = kvazaras, 2 = žvaigždė)")

plt.ylabel("'Redshift'")

plt.yscale("linear")

plt.show()

	Turinys
	1. Įvadas
	1.1. Darbo tikslas
	1.2. Darbo uždaviniai
	1.3. Darbo įrankiai

	2. Duomenų analizė
	2.1. Tiriamos duomenų aibės ir jos požymių aprašymas
	2.2. Požymių ir objektų apdorojimas
	2.3. Objektų atrinkimas
	2.4. Duomenų aibės normavimas

	3. Dimensijų mažinimo metodai ir vizualizacija
	3.1. Principinių komponenčių analizė (PCA)
	3.1.1. Aprašymas
	3.1.2. Analizė
	3.1.3. PCA išvados

	3.2. t-SNE metodas
	3.2.1. Aprašymas
	3.2.2. Branduolinių tankių ir koreliacijų grafikai
	3.2.3. t-SNE nenormuotų duomenų grafikas
	3.2.4. „n_iter“ ir „perplexity“. Normuotų duomenų rezultatai
	3.2.5. t-SNE Išvados

	3.3. UMAP metodas
	3.3.1. Aprašymas
	3.3.2. Grafikai, kai „min_dist“ vertė lygi 0
	3.3.3. Grafikai, kai „min_dist“ vertė lygi 0.5
	3.3.4. Grafikai, kai „min_dist“ vertė lygi 1
	3.3.5. Parametras „metric“
	3.3.6. UMAP Išvados

	4. Išvados
	5. Šaltiniai
	6. Kodas

